Fluid flow and convective heat transfer in a rotating rectangular microchannel with various aspect ratios

2022 ◽  
Vol 172 ◽  
pp. 107259
Author(s):  
A. Sohankar ◽  
A. Joulaei ◽  
M. Mahmoodi
1982 ◽  
Vol 104 (1) ◽  
pp. 111-117 ◽  
Author(s):  
B. A. Meyer ◽  
J. W. Mitchell ◽  
M. M. El-Wakil

The effects of cell wall thickness and thermal conductivity on natural convective heat transfer within inclined rectangular cells was studied. The cell walls are thin, and the hot and cold surfaces are isothermal. The two-dimensional natural convection problem was solved using finite difference techniques. The parameters studied were cell aspect ratios (A) of 0.5 and 1, Rayleigh numbers (Ra) up to 105, a Prandtl number (Pr) of 0.72 and a tilt angle (φ) of 60 deg. These parameters are of interest in solar collectors. The numerical results are substantiated by experimental results. It was found that convection coefficients for cells with adiabatic walls are substantially higher than those for cells with conducting walls. Correlations are given for estimating the convective heat transfer across the cell and the conductive heat transfer across the cell wall. These correlations are compared with available experimental and numerical work of other authors.


2009 ◽  
Vol 52 (5-6) ◽  
pp. 1337-1352 ◽  
Author(s):  
Omar Mokrani ◽  
Brahim Bourouga ◽  
Cathy Castelain ◽  
Hassan Peerhossaini

1991 ◽  
Vol 113 (3) ◽  
pp. 604-611 ◽  
Author(s):  
C. Y. Soong ◽  
S. T. Lin ◽  
G. J. Hwang

The paper presents an experimental study of convective heat transfer in radially rotating isothermal rectangular ducts with various height and width aspect ratios. The convective heat transfer is affected by secondary flows resulting from Coriolis force and the buoyancy flow, which is in turn due to the centrifugal force in the duct. The growth and strength of the secondary flow depend on the rotational Reynolds number; the effect of the buoyancy flow is characterized by the rotational Rayleigh number. The aspect ratio of the duct may affect the secondary flow and the buoyancy flow, and therefore is also a critical parameter in the heat transfer mechanism. In the present work the effects of the main flow, the rotational speed, and the aspect ratio γ on heat transfer are subjects of major interest. Ducts of aspect ratios γ=5, 2, 1, 0.5, and 0.2 at rotational speed up to 3000 rpm are studied. The main flow Reynolds number ranges from 700 to 20,000 to cover the laminar, transitional, and turbulent flow regimes in the duct flow. Test data and discussion are presented.


Sign in / Sign up

Export Citation Format

Share Document