scholarly journals The same well-characterized T cell epitope SIINFEKL expressed in the context of a cytoplasmic or secreted protein in BCG induces different CD8+ T cell responses

2010 ◽  
Vol 130 (1-2) ◽  
pp. 36-42 ◽  
Author(s):  
Paul D. Hulseberg ◽  
Alla Zozulya ◽  
Hamlet H. Chu ◽  
James A. Triccas ◽  
Zsuzsanna Fabry ◽  
...  
2005 ◽  
Vol 174 (6) ◽  
pp. 3432-3439 ◽  
Author(s):  
Florence Boisgérault ◽  
Paloma Rueda ◽  
Cheng Ming Sun ◽  
Sandra Hervas-Stubbs ◽  
Marie Rojas ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260118
Author(s):  
Peter Hayes ◽  
Natalia Fernandez ◽  
Christina Ochsenbauer ◽  
Jama Dalel ◽  
Jonathan Hare ◽  
...  

Full characterisation of functional HIV-1-specific T-cell responses, including identification of recognised epitopes linked with functional antiviral responses, would aid development of effective vaccines but is hampered by HIV-1 sequence diversity. Typical approaches to identify T-cell epitopes utilising extensive peptide sets require subjects’ cell numbers that exceed feasible sample volumes. To address this, CD8 T-cells were polyclonally expanded from PBMC from 13 anti-retroviral naïve subjects living with HIV using CD3/CD4 bi-specific antibody. Assessment of recognition of individual peptides within a set of 1408 HIV-1 Gag, Nef, Pol and Env potential T-cell epitope peptides was achieved by sequential IFNγ ELISpot assays using peptides pooled in 3-D matrices followed by confirmation with single peptides. A Renilla reniformis luciferase viral inhibition assay assessed CD8 T-cell-mediated inhibition of replication of a cross-clade panel of 10 HIV-1 isolates, including 9 transmitted-founder isolates. Polyclonal expansion from one frozen PBMC vial provided sufficient CD8 T-cells for both ELISpot steps in 12 of 13 subjects. A median of 33 peptides in 16 epitope regions were recognised including peptides located in previously characterised HIV-1 epitope-rich regions. There was no significant difference between ELISpot magnitudes for in vitro expanded CD8 T-cells and CD8 T-cells directly isolated from PBMCs. CD8 T-cells from all subjects inhibited a median of 7 HIV-1 isolates (range 4 to 10). The breadth of CD8 T-cell mediated HIV-1 inhibition was significantly positively correlated with CD8 T-cell breadth of peptide recognition. Polyclonal CD8 T-cell expansion allowed identification of HIV-1 isolates inhibited and peptides recognised within a large peptide set spanning the major HIV-1 proteins. This approach overcomes limitations associated with obtaining sufficient cell numbers to fully characterise HIV-1-specific CD8 T-cell responses by different functional readouts within the context of extreme HIV-1 diversity. Such an approach will have useful applications in clinical development for HIV-1 and other diseases.


Vaccines ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 260
Author(s):  
Yehia S. Mohamed ◽  
Nicola J. Borthwick ◽  
Nathifa Moyo ◽  
Hayato Murakoshi ◽  
Tomohiro Akahoshi ◽  
...  

Sub-Saharan Africa carries the biggest burden of the human immunodeficiency virus type 1 (HIV-1)/AIDS epidemic and is in an urgent need of an effective vaccine. CD8+ T cells are an important component of the host immune response to HIV-1 and may need to be harnessed if a vaccine is to be effective. CD8+ T cells recognize human leukocyte antigen (HLA)-associated viral epitopes and the HLA alleles vary significantly among different ethnic groups. It follows that definition of HIV-1-derived peptides recognized by CD8+ T cells in the geographically relevant regions will critically guide vaccine development. Here, we study fine details of CD8+ T-cell responses elicited in HIV-1/2-uninfected individuals in Nairobi, Kenya, who received a candidate vaccine delivering conserved regions of HIV-1 proteins called HIVconsv. Using 10-day cell lines established by in vitro peptide restimulation of cryopreserved PBMC and stably HLA-transfected 721.221/C1R cell lines, we confirm experimentally many already defined epitopes, for a number of epitopes we define the restricting HLA molecule(s) and describe four novel HLA-epitope pairs. We also identify specific dominance patterns, a promiscuous T-cell epitope and a rescue of suboptimal T-cell epitope induction in vivo by its functional variant, which all together inform vaccine design.


2001 ◽  
Vol 75 (1) ◽  
pp. 544-547 ◽  
Author(s):  
Donald R. Drake ◽  
Mandy L. Shawver ◽  
Annette Hadley ◽  
Eric Butz ◽  
Charles Maliszewski ◽  
...  

ABSTRACT Dendritic cells are pivotal antigen-presenting cells for generating adaptive T-cell responses. Here, we show that dendritic cells belonging to either the myeloid-related or lymphoid-related subset are permissive for infection by mouse polyomavirus and, when loaded with a peptide corresponding to the immunodominant anti-polyomavirus CD8+T-cell epitope or infected by polyomavirus, are each capable of driving expansion of primary polyomavirus-specific CD8+ T-cell responses in vivo.


2016 ◽  
Vol 68 (3) ◽  
pp. 639-647 ◽  
Author(s):  
Charlotte de Wolf ◽  
Ruurd van der Zee ◽  
Ineke den Braber ◽  
Tibor Glant ◽  
Bernard Maillère ◽  
...  

Author(s):  
Anette Stryhn ◽  
Michael Kongsgaard ◽  
Michael Rasmussen ◽  
Mikkel Nors Harndahl ◽  
Thomas Østerbye ◽  
...  

1.AbstractExamining CD8+ and CD4+ T cell responses after primary Yellow Fever vaccination in a cohort of 210 volunteers, we have identified and tetramer-validated 92 CD8+ and 50 CD4+ T cell epitopes, many inducing strong and prevalent (i.e. immunodominant) T cell responses. Restricted by 40 and 14 HLA-class I and II allotypes, respectively, these responses have wide population coverage and might be of considerable academic, diagnostic and therapeutic interest. The broad coverage of epitopes and HLA overcame the otherwise confounding effects of HLA diversity and non-HLA background providing the first evidence of T cell immunodomination in humans. Also, double-staining of CD4+ T cells with tetramers representing the same HLA-binding core, albeit with different flanking regions, demonstrated an extensive diversification of the specificities of many CD4+ T cell responses. We suggest that this could reduce the risk of pathogen escape, and that multi-tetramer staining is required to reveal the true magnitude and diversity of CD4+ T cell responses. Our T cell epitope discovery approach uses a combination of 1) overlapping peptides representing the entire Yellow Fever virus proteome to search for peptides containing CD4+ and/or CD8+ T cell epitopes, 2) predictors of peptide-HLA binding to suggest epitopes and their restricting HLA allotypes, 3) generation of peptide-HLA tetramers to identify T cell epitopes, and 4) analysis of ex vivo T cell responses to validate the same. This approach is systematic, exhaustive, and can be done in any individual of any HLA haplotype. It is all-inclusive in the sense that it includes all protein antigens and peptide epitopes, and encompasses both CD4+ and CD8+ T cell epitopes. It is efficient and, importantly, reduces the false discovery rate. The unbiased nature of the T cell epitope discovery approach presented here should support the refinement of future peptide-HLA class I and II predictors and tetramer technologies, which eventually should cover all HLA class I and II isotypes. We believe that future investigations of emerging pathogens (e.g. SARS-CoV-2) should include population-wide T cell epitope discovery using blood samples from patients, convalescents and/or long-term survivors, who might all hold important information on T cell epitopes and responses.


2020 ◽  
Vol 11 ◽  
Author(s):  
Emma C. Materne ◽  
Daniele Lilleri ◽  
Francesca Garofoli ◽  
Giuseppina Lombardi ◽  
Milena Furione ◽  
...  

Background: Congenital cytomegalovirus (cCMV) infection is the most common infection acquired before birth and from which about 20% of infants develop permanent neurodevelopmental effects regardless of presence or absence of symptoms at birth. Viral escape from host immune control may be a mechanism of CMV transmission and infant disease severity. We sought to identify and compare CMV epitopes recognized by mother-infant pairs. We also hypothesized that if immune escape were occurring, then one pattern of longitudinal CD8 T cell responses restricted by shared HLA alleles would be maternal loss (by viral escape) and infant gain (by viral reversion to wildtype) of CMV epitope recognition.Methods: The study population consisted of 6 women with primary CMV infection during pregnancy and their infants with cCMV infection. CMV UL83 and UL123 peptides with known or predicted restriction by maternal MHC class I alleles were identified, and a subset was selected for testing based on several criteria. Maternal or infant cells were stimulated with CMV peptides in the IFN-γ ELISpot assay.Results: Overall, 14 of 25 (56%; 8 UL83 and 6 UL123) peptides recognized by mother-infant pairs were not previously reported as CD8 T cell epitopes. Of three pairs with longitudinal samples, one showed maternal loss and infant gain of responses to a CMV epitope restricted by a shared HLA allele.Conclusions: CD8 T cell responses to multiple novel CMV epitopes were identified, particularly in infants. Moreover, the hypothesized pattern of CMV immune escape was observed in one mother-infant pair. These findings emphasize that knowledge of paired CMV epitope recognition allows exploration of viral immune escape that may operate within the maternal-fetal system. Our work provides rationale for future studies of this potential mechanism of CMV transmission during pregnancy or clinical outcomes of infants with cCMV infection.


Vaccine ◽  
2021 ◽  
Author(s):  
Susan Pereira Ribeiro ◽  
Vania Gomes De Moura Mattaraia ◽  
Rafael Ribeiro Almeida ◽  
Elizabeth Juliana Ghiuro Valentine ◽  
Natiely Silva Sales ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5490-5490
Author(s):  
Brad E. Hoffman ◽  
Roland W. Herzog

Abstract A significant complication associated with treatment of inherited protein deficiencies, such as hemophilia B, by gene replacement therapy is the potential for the activation of transgene specific B and T cells to the therapeutic protein, coagulation factor IX (F.IX). In addition to the potential for inhibitor formation as a result of MHC class II antigen presentation (CD4+ T cell-dependent activation of B cells, which may also be observed in conventional protein-based therapy), gene expression may lead to MHC class I presentation of F.IX-derived peptides to CD8+ T cells. Upon in vivo gene transfer, such immune responses to may elicit a cytotoxic T lymphocyte (CTL) response capable of destroying target cells that express the F.IX transgene product. Therefore, to better understand the role of F.IX-specific CD8+ T-cell responses, it is essential that MHC I-restricted CD8 T-cell epitopes be identified. Here, we used a peptide library consisting of 82 individual 15-mer peptides overlapping by ten residues that spans the complete human F.IX (hF.IX) protein to preliminarily identify a specific immunodominate CD8+ T-cell epitope. The peptides were pooled into groups, each containing 8–11 peptides to create a matrix of 18 pools, with each peptide represented in two pools. C3H/HeJ were immunized with 5×1010 vector genomes of E1/E3-deleted adenovirus expressing hF.IX (Ad-hF.IX) via intramuscular injection into the quadriceps. Nine days later, the harvested spleen and popliteal lymph node cells were pooled and evaluated for CD8+ T-cell responses by intracellular cytokine staining for IFN-γ after being stimulated for 5h with peptides or controls. The frequency of IFN-γ producing hF.IX-specific CD8+ T-cells was determined by flow cytometry. While 16 pools from Ad-hF.IX immunized C3H/HeJ mice showed no response above the frequency of mock-stimulated cells, lymphocytes from two overlapping pools demonstrated a ~2.5-fold increase in frequency of CD8+ IFN-γ+ cells. From these results we can conclude that peptide 74 (SGGPHVTEVEGTSFL) contains a CD8+ T cell epitope for C3H/HeJ mice (H-2k haplotype). Furthermore, splenocytes from naive mice failed to respond to any of the peptide pools. The amino acid sequence corresponding to peptide 74 is located within the catalytic domain of hF.IX. This finding is of particular interest, in that, we previously reported a peptide containing the immunodominate CD4+ T-cell epitope in C3H/HeJ is also located within the catalytic domain of hF.IX (Blood 108:408). The definitive identification of hF.IX-specific CD8+ epitopes will facilitate the evaluation of experimental gene therapy strategies in murine models by providing a reagent for in vitro stimulation of F.IX specific CD8+ lymphocytes. For example, we can now determine the efficiency of CD8+ T cell activation as a function of vector, route, and dose following in vivo gene transfer.


2012 ◽  
Vol 150 (1-2) ◽  
pp. 36-46 ◽  
Author(s):  
Joan Tarradas ◽  
Marta Monsó ◽  
Lorenzo Fraile ◽  
Beatriz G. de la Torre ◽  
Marta Muñoz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document