Initial Identification of a Mouse Human Factor IX-Specific CD8+ T-Cell Epitope.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5490-5490
Author(s):  
Brad E. Hoffman ◽  
Roland W. Herzog

Abstract A significant complication associated with treatment of inherited protein deficiencies, such as hemophilia B, by gene replacement therapy is the potential for the activation of transgene specific B and T cells to the therapeutic protein, coagulation factor IX (F.IX). In addition to the potential for inhibitor formation as a result of MHC class II antigen presentation (CD4+ T cell-dependent activation of B cells, which may also be observed in conventional protein-based therapy), gene expression may lead to MHC class I presentation of F.IX-derived peptides to CD8+ T cells. Upon in vivo gene transfer, such immune responses to may elicit a cytotoxic T lymphocyte (CTL) response capable of destroying target cells that express the F.IX transgene product. Therefore, to better understand the role of F.IX-specific CD8+ T-cell responses, it is essential that MHC I-restricted CD8 T-cell epitopes be identified. Here, we used a peptide library consisting of 82 individual 15-mer peptides overlapping by ten residues that spans the complete human F.IX (hF.IX) protein to preliminarily identify a specific immunodominate CD8+ T-cell epitope. The peptides were pooled into groups, each containing 8–11 peptides to create a matrix of 18 pools, with each peptide represented in two pools. C3H/HeJ were immunized with 5×1010 vector genomes of E1/E3-deleted adenovirus expressing hF.IX (Ad-hF.IX) via intramuscular injection into the quadriceps. Nine days later, the harvested spleen and popliteal lymph node cells were pooled and evaluated for CD8+ T-cell responses by intracellular cytokine staining for IFN-γ after being stimulated for 5h with peptides or controls. The frequency of IFN-γ producing hF.IX-specific CD8+ T-cells was determined by flow cytometry. While 16 pools from Ad-hF.IX immunized C3H/HeJ mice showed no response above the frequency of mock-stimulated cells, lymphocytes from two overlapping pools demonstrated a ~2.5-fold increase in frequency of CD8+ IFN-γ+ cells. From these results we can conclude that peptide 74 (SGGPHVTEVEGTSFL) contains a CD8+ T cell epitope for C3H/HeJ mice (H-2k haplotype). Furthermore, splenocytes from naive mice failed to respond to any of the peptide pools. The amino acid sequence corresponding to peptide 74 is located within the catalytic domain of hF.IX. This finding is of particular interest, in that, we previously reported a peptide containing the immunodominate CD4+ T-cell epitope in C3H/HeJ is also located within the catalytic domain of hF.IX (Blood 108:408). The definitive identification of hF.IX-specific CD8+ epitopes will facilitate the evaluation of experimental gene therapy strategies in murine models by providing a reagent for in vitro stimulation of F.IX specific CD8+ lymphocytes. For example, we can now determine the efficiency of CD8+ T cell activation as a function of vector, route, and dose following in vivo gene transfer.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3269-3269
Author(s):  
Samuel L. Murphy ◽  
Daniel J. Hui ◽  
Shyrie Edmonson ◽  
Katherine A. High

Abstract Use of adeno-associated virus (AAV) to achieve liver-targeted gene transfer for the treatment of hemophilia B in human subjects resulted in the expression of therapeutic levels of Factor IX. However, expression of Factor IX was transient and receded to baseline levels over a period of several weeks. The loss of transgene expression was coincident with a rise in CD8+ T cells specific for sequences of the AAV capsid protein, a phenomenon never observed in small and large animal model studies of this treatment. In this study, we tested whether capsid sequences conserved between the pathogenic parvovirus B19 and AAV (~25% identity) could result in cross-reactive activation of capsid specific T-cells. Functional cross-reactivity could lead to an effective vaccination against AAV following exposure to B19 virus, a common infectious virus which was recently shown to elicit a strong CD8 T cell response that can persist for up to one year after exposure to the virus. Furthermore, B19 virus tropism is restricted to humans and this could explain the absence of this outcome in animal models. In order to test our hypothesis, Balb/C mice were immunized against the capsid protein of AAV serotypes 2 or 8 (AAV2 and AAV8). Isolation of splenocytes from mice immunized against AAV2 capsid was followed by ELISpot analysis that compared the response against the immunodominant AAV2 CD8 T cell epitope (VPQYGYLTL) to the response against the homologous B19 capsid epitope (PPQYAYLTV). Indeed cross-reactivity was observed: using ELISpots for IFN-g, incubation with the AAV epitope yielded 1866 spot-forming units (sfu) per 106 splenocytes (average of 3 determinations), and incubation with the B19 epitope yielded 537 sfu/106 splenocytes, while incubation with irrelevant peptide yielded <10 sfu/106 splenocytes (n=5 mice per group). This decreased but significant cross-reactive population of T cells was similarly observed following immunization against AAV8 capsid and ELISpot analysis, with an average of 2137 sfu/106 splenocytes in response to the immunodominant AAV8 CD8 T cell epitope (IPQYGYLTL) and an average of 486 sfu/106 splenocytes in response to the B19 epitope. These results were further substantiated by intracellular cytokine staining, which defined CD8+ T cells as the responding cell population and showed cross-reactivity at levels consistent with ELISpot analysis. To test whether such cross reactivity could be observed in humans, we identified several epitopes through bioinformatics which showed the potential to be cross-reactive in the context of specific HLA haplotypes. Human splenocytes from one B0702 anonymous donor and three B44 anonymous donors were subjected to three rounds of in vitro stimulation with the homologous AAV and B19 capsid peptide sequences. Subsequent ELISpot analysis showed that none of these expansions resulted in the selective expansion of cells specific for these peptides. We conclude from these studies that CD8+ T cells specific for parvovirus capsid sequences can be functionally cross-reactive with AAV capsid, but that further studies of human lymphocytes will be required to determine the significance of this finding for human gene transfer trials.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260118
Author(s):  
Peter Hayes ◽  
Natalia Fernandez ◽  
Christina Ochsenbauer ◽  
Jama Dalel ◽  
Jonathan Hare ◽  
...  

Full characterisation of functional HIV-1-specific T-cell responses, including identification of recognised epitopes linked with functional antiviral responses, would aid development of effective vaccines but is hampered by HIV-1 sequence diversity. Typical approaches to identify T-cell epitopes utilising extensive peptide sets require subjects’ cell numbers that exceed feasible sample volumes. To address this, CD8 T-cells were polyclonally expanded from PBMC from 13 anti-retroviral naïve subjects living with HIV using CD3/CD4 bi-specific antibody. Assessment of recognition of individual peptides within a set of 1408 HIV-1 Gag, Nef, Pol and Env potential T-cell epitope peptides was achieved by sequential IFNγ ELISpot assays using peptides pooled in 3-D matrices followed by confirmation with single peptides. A Renilla reniformis luciferase viral inhibition assay assessed CD8 T-cell-mediated inhibition of replication of a cross-clade panel of 10 HIV-1 isolates, including 9 transmitted-founder isolates. Polyclonal expansion from one frozen PBMC vial provided sufficient CD8 T-cells for both ELISpot steps in 12 of 13 subjects. A median of 33 peptides in 16 epitope regions were recognised including peptides located in previously characterised HIV-1 epitope-rich regions. There was no significant difference between ELISpot magnitudes for in vitro expanded CD8 T-cells and CD8 T-cells directly isolated from PBMCs. CD8 T-cells from all subjects inhibited a median of 7 HIV-1 isolates (range 4 to 10). The breadth of CD8 T-cell mediated HIV-1 inhibition was significantly positively correlated with CD8 T-cell breadth of peptide recognition. Polyclonal CD8 T-cell expansion allowed identification of HIV-1 isolates inhibited and peptides recognised within a large peptide set spanning the major HIV-1 proteins. This approach overcomes limitations associated with obtaining sufficient cell numbers to fully characterise HIV-1-specific CD8 T-cell responses by different functional readouts within the context of extreme HIV-1 diversity. Such an approach will have useful applications in clinical development for HIV-1 and other diseases.


Vaccines ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 260
Author(s):  
Yehia S. Mohamed ◽  
Nicola J. Borthwick ◽  
Nathifa Moyo ◽  
Hayato Murakoshi ◽  
Tomohiro Akahoshi ◽  
...  

Sub-Saharan Africa carries the biggest burden of the human immunodeficiency virus type 1 (HIV-1)/AIDS epidemic and is in an urgent need of an effective vaccine. CD8+ T cells are an important component of the host immune response to HIV-1 and may need to be harnessed if a vaccine is to be effective. CD8+ T cells recognize human leukocyte antigen (HLA)-associated viral epitopes and the HLA alleles vary significantly among different ethnic groups. It follows that definition of HIV-1-derived peptides recognized by CD8+ T cells in the geographically relevant regions will critically guide vaccine development. Here, we study fine details of CD8+ T-cell responses elicited in HIV-1/2-uninfected individuals in Nairobi, Kenya, who received a candidate vaccine delivering conserved regions of HIV-1 proteins called HIVconsv. Using 10-day cell lines established by in vitro peptide restimulation of cryopreserved PBMC and stably HLA-transfected 721.221/C1R cell lines, we confirm experimentally many already defined epitopes, for a number of epitopes we define the restricting HLA molecule(s) and describe four novel HLA-epitope pairs. We also identify specific dominance patterns, a promiscuous T-cell epitope and a rescue of suboptimal T-cell epitope induction in vivo by its functional variant, which all together inform vaccine design.


Vaccine ◽  
2010 ◽  
Vol 28 (13) ◽  
pp. 2556-2564 ◽  
Author(s):  
Erik Jongert ◽  
Arnaud Lemiere ◽  
Jo Van Ginderachter ◽  
Stéphane De Craeye ◽  
Kris Huygen ◽  
...  

2021 ◽  
Author(s):  
Leonardo Estrada ◽  
Didem Agac Cobanoglu ◽  
Aaron Wise ◽  
Robert Maples ◽  
Murat Can Cobanoglu ◽  
...  

Viral infections drive the expansion and differentiation of responding CD8+ T cells into variegated populations of cytolytic effector and memory cells. While pro-inflammatory cytokines and cell surface immune receptors play a key role in guiding T cell responses to infection, T cells are also markedly influenced by neurotransmitters. Norepinephrine is a key sympathetic neurotransmitter, which acts to suppress CD8 + T cell cytokine secretion and lytic activity by signaling through the beta2-adrenergic receptor (ADRB2). Although ADRB2 signaling is considered generally immunosuppressive, its role in regulating differentiation of effector T cells in response to infection has not been investigated. Using an adoptive transfer approach, we compared the expansion and differentiation of wild type (WT) to Adrb2-/- CD8 + T cells throughout the primary response to vesicular stomatitis virus (VSV) infection in vivo. We measured the dynamic changes in transcriptome profiles of antigen-specific CD8 + T cells as they responded to VSV. Within the first 7 days of infection, WT cells out-paced the expansion of Adrb2-/- cells, which correlated with reduced expression of IL-2 and the IL-2Ralpha; in the absence of ADRB2. RNASeq analysis identified over 300 differentially expressed genes that were both temporally regulated following infection and selectively regulated in WT vs Adrb2-/- cells. These genes contributed to major transcriptional pathways including cytokine receptor activation, signaling in cancer, immune deficiency, and neurotransmitter pathways. By parsing genes within groups that were either induced or repressed over time in response to infection, we identified three main branches of genes that were differentially regulated by the ADRB2. These gene sets were predicted to be regulated by specific transcription factors involved in effector T cell development, such as Tbx21 and Eomes. Collectively, these data demonstrate a significant role for ADRB2 signaling in regulating key transcriptional pathways during CD8 + T cells responses to infection that may dramatically impact their functional capabilities and downstream memory cell development.


2005 ◽  
Vol 174 (6) ◽  
pp. 3432-3439 ◽  
Author(s):  
Florence Boisgérault ◽  
Paloma Rueda ◽  
Cheng Ming Sun ◽  
Sandra Hervas-Stubbs ◽  
Marie Rojas ◽  
...  

2007 ◽  
Vol 81 (20) ◽  
pp. 11187-11194 ◽  
Author(s):  
Kirsten Richter ◽  
Karen Baur ◽  
Andreas Ackermann ◽  
Urs Schneider ◽  
Jürgen Hausmann ◽  
...  

ABSTRACT Borna disease virus (BDV) is a highly neurotropic, noncytolytic virus. Experimentally infected B10.BR mice remain healthy unless specific antiviral T cells that infiltrate the infected brain are triggered by immunization. In contrast, infected MRL mice spontaneously mount an antiviral T-cell response that can result in meningoencephalitis and neurological disease. The antiviral T cells may, alternatively, eliminate the virus without inducing disease if they are present in sufficient numbers before the virus replicates to high titers. Since the immune response of H-2k mice is directed mainly against the epitope TELEISSI located in the viral nucleoprotein N, we generated BDV mutants that feature TQLEISSI in place of TELEISSI. We show that adoptive transfer of BDV N-specific CD8 T cells induced neurological disease in B10.BR mice persistently infected with wild-type BDV but not with the mutant virus expressing TQLEISSI. Surprisingly, the mutant virus replicated less well in adult MRL wild-type mice than in mutant mice lacking mature CD8 T cells. Furthermore, when MRL mice were infected with the TQLEISSI-expressing BDV mutant as newborns, neurological disease was observed, although at a lower rate and with slower kinetics than in mice infected with wild-type virus. These results confirm that TELEISSI is the major CD8 T-cell epitope in H-2k mice and suggest that unidentified minor epitopes are present in the BDV proteome which are recognized rather efficiently by antiviral T cells if the dominant epitope is absent.


2013 ◽  
Vol 210 (3) ◽  
pp. 491-502 ◽  
Author(s):  
Shlomo Z. Ben-Sasson ◽  
Alison Hogg ◽  
Jane Hu-Li ◽  
Paul Wingfield ◽  
Xi Chen ◽  
...  

Here, we show that interleukin-1 (IL-1) enhances antigen-driven CD8 T cell responses. When administered to recipients of OT-I T cell receptor transgenic CD8 T cells specific for an ovalbumin (OVA) peptide, IL-1 results in an increase in the numbers of wild-type but not IL1R1−/− OT-I cells, particularly in spleen, liver, and lung, upon immunization with OVA and lipopolysaccharide. IL-1 administration also results in an enhancement in the frequency of antigen-specific cells that are granzyme B+, have cytotoxic activity, and/ or produce interferon γ (IFN-γ). Cells primed in the presence of IL-1 display enhanced expression of granzyme B and increased capacity to produce IFN-γ when rechallenged 2 mo after priming. In three in vivo models, IL-1 enhances the protective value of weak immunogens. Thus, IL-1 has a marked enhancing effect on antigen-specific CD8 T cell expansion, differentiation, migration to the periphery, and memory.


2001 ◽  
Vol 75 (1) ◽  
pp. 544-547 ◽  
Author(s):  
Donald R. Drake ◽  
Mandy L. Shawver ◽  
Annette Hadley ◽  
Eric Butz ◽  
Charles Maliszewski ◽  
...  

ABSTRACT Dendritic cells are pivotal antigen-presenting cells for generating adaptive T-cell responses. Here, we show that dendritic cells belonging to either the myeloid-related or lymphoid-related subset are permissive for infection by mouse polyomavirus and, when loaded with a peptide corresponding to the immunodominant anti-polyomavirus CD8+T-cell epitope or infected by polyomavirus, are each capable of driving expansion of primary polyomavirus-specific CD8+ T-cell responses in vivo.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 477-477
Author(s):  
Erica Dander ◽  
Giuseppina Li Pira ◽  
Ettore Biagi ◽  
Fabrizio Manca ◽  
Andrea Biondi ◽  
...  

Abstract BACKGROUND: Reactivation of latent CMV in immunocompromised recipients of allogeneic stem cell transplantation remains a major cause of morbidity and mortality. Reconstitution of immunity by CMV specific immunotherapy is an attractive alternative to drugs currently used, which show high toxicity and are sometimes ineffective. It has been demonstrated that CD4 helper T-cell function is crucial for the persistence of in vivo transferred CD8 CMV-specific CTL. Based on this finding, we have explored the feasibility of generating both anti-CMV CD4 and anti-CMV CD8 T-cell lines. METHODS: Dendritic Cells (DC) were generated from donor peripheral blood (PB) monocytes after a 7-day culture in the presence of GM-CSF plus IL-4 and matured with TNF-α, IFN-α, IFN-γ, IL1-β, POLI I:C. Matured-DC were then pulsed with a pool of 50 peptides spanning pp65 and IE1 proteins which are recognised by both CD4 and CD8 T lymphocytes. Donor T cells were stimulated three times at a T cell/DC ratio of 1:6 on day 0, +7 and +14 with mature peptide pulsed-DC. At the end of the culture the specificity of generated T cells was determined as percentage of pentamer-positive cells and intracellular IFN-γ production after incubation with peptide pulsed-DC. Cultured T cells were also analysed for their ability to proliferate in response to peptide pulsed-target cells, to kill them in a standard citotoxicity assay and to migrate in response to inflammatory (CXCL9, CCL3 and CCL5) and constitutive (CXCL12) chemokines. RESULTS: CMV-specific T cell lines were generated from five CMV seropositive donors. In four cases CD4 and CD8 CMV-specific T cell lines were expanded successfully. Cultured T cells expressed CD8 (mean= 70%, range 60–81%) and CD4 (mean= 20%, range 15–28%) and showed a CD45RA- CCR7- Effector Memory phenothype (mean=26%, range 19–30%) or a CD45RA+ CCR7- T Effector Memory RA-Positive phenothype (mean=67%, range 59–77%). An enriched CMV-specific T cell population was observed after staining with pentamers (7–45% pentamer-positive T cells). Furthermore, 90% of CD8+ and 40% of CD4+ T cells expressed high levels of intracytoplasmatic perforin and granzyme. In 4/5 cases tested, cutured T cells showed a cytolitic activity against CD8-peptide pulsed target cells (average lysis=50%, range 40–55%) and to a lesser extent against CD4-peptide pulsed target cells (average lysis=35%, range 30–40%). In addition, cultured T lymphocytes were able to proliferate and to produce intracytoplasmic IFN-γ (average production=50%, range 35–60%) after exposure to peptide-pulsed DC. Finally, Cultured T cells strongly migrated in response to chemokines (CXCL9, CCL3 and CCL5) involved in the recruitment of effector cells during viral infection. DISCUSSION: In conclusion, a great advantage of this method is represented by the possibility to generate anti-CMV CD4+ T cells, which could support in vivo the persistence of re-infused CMV-specific CTL. Moreover, the possibility of generating peptides under GMP conditions would facilitate the translation of this approach into clinical intervention.


Sign in / Sign up

Export Citation Format

Share Document