scholarly journals Decoding of spatial information of pain and tactile stimulus in the brain: a multivariate pattern analysis of functional magnetic resonance imaging data

2020 ◽  
Vol 9 ◽  
pp. 100552
Author(s):  
In-Seon Lee ◽  
Dha-hyun Choi ◽  
Younbyoung Chae
Science ◽  
2012 ◽  
Vol 337 (6090) ◽  
pp. 109-111 ◽  
Author(s):  
R. McKell Carter ◽  
Daniel L. Bowling ◽  
Crystal Reeck ◽  
Scott A. Huettel

To make adaptive decisions in a social context, humans must identify relevant agents in the environment, infer their underlying strategies and motivations, and predict their upcoming actions. We used functional magnetic resonance imaging, in conjunction with combinatorial multivariate pattern analysis, to predict human participants’ subsequent decisions in an incentive-compatible poker game. We found that signals from the temporal-parietal junction provided unique information about the nature of the upcoming decision, and that information was specific to decisions against agents who were both social and relevant for future behavior.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Svetlana V. Shinkareva ◽  
Jing Wang ◽  
Douglas H. Wedell

This paper covers similarity analyses, a subset of multivariate pattern analysis techniques that are based on similarity spaces defined by multivariate patterns. These techniques offer several advantages and complement other methods for brain data analyses, as they allow for comparison of representational structure across individuals, brain regions, and data acquisition methods. Particular attention is paid to multidimensional scaling and related approaches that yield spatial representations or provide methods for characterizing individual differences. We highlight unique contributions of these methods by reviewing recent applications to functional magnetic resonance imaging data and emphasize areas of caution in applying and interpreting similarity analysis methods.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuka Inamochi ◽  
Kenji Fueki ◽  
Nobuo Usui ◽  
Masato Taira ◽  
Noriyuki Wakabayashi

AbstractSuccessful adaptation to wearing dentures with palatal coverage may be associated with cortical activity changes related to tongue motor control. The purpose was to investigate the brain activity changes during tongue movement in response to a new oral environment. Twenty-eight fully dentate subjects (mean age: 28.6-years-old) who had no experience with removable dentures wore experimental palatal plates for 7 days. We measured tongue motor dexterity, difficulty with tongue movement, and brain activity using functional magnetic resonance imaging during tongue movement at pre-insertion (Day 0), as well as immediately (Day 1), 3 days (Day 3), and 7 days (Day 7) post-insertion. Difficulty with tongue movement was significantly higher on Day 1 than on Days 0, 3, and 7. In the subtraction analysis of brain activity across each day, activations in the angular gyrus and right precuneus on Day 1 were significantly higher than on Day 7. Tongue motor impairment induced activation of the angular gyrus, which was associated with monitoring of the tongue’s spatial information, as well as the activation of the precuneus, which was associated with constructing the tongue motor imagery. As the tongue regained the smoothness in its motor functions, the activation of the angular gyrus and precuneus decreased.


Sign in / Sign up

Export Citation Format

Share Document