scholarly journals Extensive investigation of the ultrastructure of kink-bands in flax fibres

2021 ◽  
Vol 164 ◽  
pp. 113368
Author(s):  
Alessia Melelli ◽  
Sylvie Durand ◽  
Olivier Arnould ◽  
Emmanuelle Richely ◽  
Sofiane Guessasma ◽  
...  
2019 ◽  
Vol 54 (3) ◽  
pp. 379-395 ◽  
Author(s):  
Rishad Rayyaan ◽  
William Richard Kennon ◽  
Prasad Potluri ◽  
Mahmudul Akonda

As far as the tensile properties of natural fibres as reinforcements for composites are concerned, flax fibres will stay at the top-end. However, an efficient conversion of fibre properties into their corresponding composite properties has been a challenge, due to the fibre damages through the conventional textile methods utilised to process flax. These techniques impart disadvantageous features onto fibres at both micro- and meso-scale level, which in turn degrade the mechanical performances of flax fibre-reinforced composites (FFRC). Undulation of fibre is one of those detrimental features, which occurs during traditional fibre extraction from plant and fabric manufacturing routes. The undulation or waviness causes micro-compressive defects or ‘kink-bands’ in elementary flax fibres, which significantly undermines the performances of FFRC. Manufacturing flax fabric with minimal undulation could diminish the micro-compressive defects up to a substantial extent. In this research, nonwoven flax tapes of highly aligned flax fibres, blended with a small proportion of polylactic acid have been manufactured deploying a novel technique. Composites reinforced from those nonwoven tapes have been compared with composites reinforced with woven Hopsack fabrics and warp knitted unidirectional fabrics from flax, comprising undulating fibres. The composites reinforced with the highly aligned tapes have shown 33% higher fibre-bundle strength, and 57% higher fibre-bundle stiffness in comparison with the composites reinforced with Hopsack fabric. The results have been discussed in the light of fibre undulation, elementary fibre individualisation, homogeneity of fibre distribution, extent of resin rich areas and impregnation of the fibre lumens.


2000 ◽  
Vol 653 ◽  
Author(s):  
Samuel Forest

AbstractThe mechanics of generalized continua provides an efficient way of introducing intrinsic length scales into continuum models of materials. A Cosserat framework is presented here to descrine the mechanical behavior of crystalline solids. The first application deals with the problem of the stress field at a crak tip in Cosserat single crystals. It is shown that the strain localization patterns developping at the crack tip differ from the classical picture : the Cosserat continuum acts as a bifurcation mode selector, whereby kink bands arising in the classical framework disappear in generalized single crystal plasticity. The problem of a Cosserat elastic inclusion embedded in an infinite matrix is then considered to show that the stress state inside the inclusion depends on its absolute size lc. Two saturation regimes are observed : when the size R of the inclusion is much larger than a characteristic size of the medium, the classical Eshelby solution is recovered. When R is much small than the inclusion, a much higher stress is reached (for an inclusion stiffer than the matrix) that does not depend on the size any more. There is a transition regime for which the stress state is not homogeneous inside the inclusion. Similar regimes are obtained in the study of grain size effects in polycrystalline aggregates of Cosserat grains.


2021 ◽  
Vol 6 (6) ◽  
pp. 82
Author(s):  
Cinthia Maia Pederneiras ◽  
Rosário Veiga ◽  
Jorge de Brito

One of the main functions of renders, together with the overall aesthetic appearance of the building, is the protection of the walls against external aggressive actions, such as water, salts solutions, erosion, and mechanical impacts. However, some anomalies of renders may drastically hinder their protection ability. In fact, cracking, high water permeability, and loss of adherence to the substrate of renders limit their barrier effect and favour the exposure of the substrate to external actions. The incorporation of fibres in mortars is commonly pointed out to reduce their cracking susceptibility, due to the probable enhancement in tensile strength and ductility of the composite. The use of lime in substitution of the part of the cement binder is seen as a method to reduce the modulus of elasticity and therefore enhance the resistance to cracking due to drying shrinkage. Therefore, this study investigates the wall protection-related properties of natural fibre-reinforced renders with cement-lime as a binary binder at 1:1:6 volumetric ratio. With this purpose, wool, coir, and flax fibres are used at 20% by total mortar volume and the water behaviour, cracking susceptibility, and adherence to the substrate of the mortars are assessed. Specifically, the water absorption by capillarity, drying rates, permeability to water under pressure, adherence strength, and shrinkage are evaluated. In order to evaluate the renders’ durability and therefore the durability of the protection to the walls, an artificial accelerated ageing test is performed based on heating-freezing and humidification-freezing cycles. The results indicate that the fibres’ addition reduced the shrinkage and modulus of elasticity of the mortars, which suggests lower susceptibility to cracking. The addition of fibres in mortars seemed to slightly affect their water performance and only at early ages. From the results, it was concluded that the adherence strength is not affected by the fibres’ incorporation. The fibres seem also to reduce the impacts of the ageing cycles on the mortar and the improvements provided by the fibres’ addition to the mortars’ performance remained after ageing when compared to the mortars without fibres, thus being a potential alternative to increase their durability. These aspects are particularly important for buildings, since they can extend their service life and promote their sustainability.


2008 ◽  
Vol 3 (4) ◽  
pp. 155892500800300 ◽  
Author(s):  
Walter R. Hall ◽  
Warren F. Knoff

The strength retention after exposure to elevated temperature in air of continuous filament and staple spun PPTA sewing thread and the precursor yarns was determined. For both types, the process of converting the greige yarn to thread reduced the amount of strength retained after thermal exposure. The continuous filament products retained more strength than the staple products. The data was fitted to a kinetic rate model in which two strength loss processes occurred. The first process occurred within about the first 5 minutes of thermal exposure and is hypothesized to be hydrolytic degradation. The estimated secondary degradation process activation energy suggests this to be thermo-oxidative degradation. Optical microscopy of filaments indicates a higher level of kink banding and other damage in continuous filament versus staple products and in finished thread versus the precursor yarns. The kink bands and damage are believed to be caused by the staple manufacturing process and the downstream processing of precursor yarn to finished sewing thread. The kink bands and damage are hypothesized to be responsible for the differences in strength retention.


2018 ◽  
Vol 53 (4) ◽  
pp. 535-546 ◽  
Author(s):  
M Altaf ◽  
S Singh ◽  
VV Bhanu Prasad ◽  
Manish Patel

The compressive strength of C/SiC composite at different strain rates, off-axis orientations and after high-velocity impact was studied. The compressive strength was found to be 137 ± 23, 130 ± 46 and 162 ± 33 MPa at a strain rate of 3.3 × 10−5, 3.3 × 10−3, 3.3 × 10−3 s−1, respectively. On the other hand, the compressive strength was found to be 130 ± 46, 99 ± 23 and 87 ± 9 MPa for 0°/90°, 30°/60° and 45°/45° fibre orientations to loading direction, respectively. After high-velocity impact, the residual compressive strength of C/SiC composite was found to be 58 ± 26, 44 ± 18 and 36 ± 3.5 MPa after impact with 100, 150 and 190 m/s, respectively. The formation of kink bands in fibre bundles was found to be dominant micro-mechanism for compressive failure of C/SiC composite for 0°/90° orientation. On the other hand, delamination and the fibre bundles rotation were found to be the dominant mechanism for off-axis failure of composite.


2001 ◽  
Vol 34 (22) ◽  
pp. 7858-7867 ◽  
Author(s):  
Lei Qiao ◽  
Karen I. Winey ◽  
David C. Morse
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document