Development of homozygous transgenic Atropa belladonna plants with glyphosate resistance and high-yield scopolamine using metabolic engineering

2021 ◽  
Vol 171 ◽  
pp. 113953
Author(s):  
Qiaozhuo Zhang ◽  
Mengjiao Liang ◽  
Yuanyuan Liu ◽  
Chunxian Yang ◽  
Junlan Zeng ◽  
...  
2009 ◽  
Vol 76 (1) ◽  
pp. 169-175 ◽  
Author(s):  
Dominik Mojzita ◽  
Marilyn Wiebe ◽  
Satu Hilditch ◽  
Harry Boer ◽  
Merja Penttilä ◽  
...  

ABSTRACT d-Galacturonic acid can be obtained by hydrolyzing pectin, which is an abundant and low value raw material. By means of metabolic engineering, we constructed fungal strains for the conversion of d-galacturonate to meso-galactarate (mucate). Galactarate has applications in food, cosmetics, and pharmaceuticals and as a platform chemical. In fungi d-galacturonate is catabolized through a reductive pathway with a d-galacturonate reductase as the first enzyme. Deleting the corresponding gene in the fungi Hypocrea jecorina and Aspergillus niger resulted in strains unable to grow on d-galacturonate. The genes of the pathway for d-galacturonate catabolism were upregulated in the presence of d-galacturonate in A. niger, even when the gene for d-galacturonate reductase was deleted, indicating that d-galacturonate itself is an inducer for the pathway. A bacterial gene coding for a d-galacturonate dehydrogenase catalyzing the NAD-dependent oxidation of d-galacturonate to galactarate was introduced to both strains with disrupted d-galacturonate catabolism. Both strains converted d-galacturonate to galactarate. The resulting H. jecorina strain produced galactarate at high yield. The A. niger strain regained the ability to grow on d-galacturonate when the d-galacturonate dehydrogenase was introduced, suggesting that it has a pathway for galactarate catabolism.


2018 ◽  
Vol 62 (1) ◽  
pp. 41-50 ◽  
Author(s):  
Silas Busck Mellor ◽  
James B.Y.H. Behrendorff ◽  
Agnieszka Zygadlo Nielsen ◽  
Poul Erik Jensen ◽  
Mathias Pribil

Using plants as hosts for production of complex, high-value compounds and therapeutic proteins has gained increasing momentum over the past decade. Recent advances in metabolic engineering techniques using synthetic biology have set the stage for production yields to become economically attractive, but more refined design strategies are required to increase product yields without compromising development and growth of the host system. The ability of plant cells to differentiate into various tissues in combination with a high level of cellular compartmentalization represents so far the most unexploited plant-specific resource. Plant cells contain organelles called plastids that retain their own genome, harbour unique biosynthetic pathways and differentiate into distinct plastid types upon environmental and developmental cues. Chloroplasts, the plastid type hosting the photosynthetic processes in green tissues, have proven to be suitable for high yield protein and bio-compound production. Unfortunately, chloroplast manipulation often affects photosynthetic efficiency and therefore plant fitness. In this respect, plastids of non-photosynthetic tissues, which have focused metabolisms for synthesis and storage of particular classes of compounds, might prove more suitable for engineering the production and storage of non-native metabolites without affecting plant fitness. This review provides the current state of knowledge on the molecular mechanisms involved in plastid differentiation and focuses on non-photosynthetic plastids as alternative biotechnological platforms for metabolic engineering.


2017 ◽  
Vol 62 (2) ◽  
pp. 156 ◽  
Author(s):  
Aladár Vidra ◽  
Áron Németh

3-hydroxypropionic acid is a commercially valuable, important platform chemical. It can serve as a precursor for several key compound, such as acrylic acid, 1,3-propanediol, methyl acrylate, acrylamide, ethyl 3-HP, malonic acid, propiolactone and acrylonitrile. Several microorganisms can produce through a range of metabolic pathways. It is indispensable for the commercial production of 3-HP to use cheap and abundant substrates and also to produce in highly efficient processes which could result high yield, titer and productivity. Because  of the fact, that natural microorganism do not perform these conditions, metabolic engineering and genetically engineered microorganism are widely used for research and production as well. Several metabolic pathways are introduced to utilize glucose or glycerol for 3-HP production. In this overview naturally producer microorganisms, synthetic biochemical pathways, results from the recent years and recovery of 3-HP are detailed.


2013 ◽  
Vol 17 ◽  
pp. 59-67 ◽  
Author(s):  
Jun-Chao Huang ◽  
Yu-Juan Zhong ◽  
Jin Liu ◽  
Gerhard Sandmann ◽  
Feng Chen

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Alejandro Torres-Haro ◽  
Jorge Verdín ◽  
Manuel R. Kirchmayr ◽  
Melchor Arellano-Plaza

AbstractAstaxanthin is a carotenoid with a number of assets useful for the food, cosmetic and pharmaceutical industries. Nowadays, it is mainly produced by chemical synthesis. However, the process leads to an enantiomeric mixture where the biologically assimilable forms (3R, 3′R or 3S, 3′S) are a minority. Microbial production of (3R, 3′R) astaxanthin by Xanthophyllomyces dendrorhous is an appealing alternative due to its fast growth rate and easy large-scale production. In order to increase X. dendrorhous astaxanthin yields, random mutant strains able to produce from 6 to 10 mg/g dry mass have been generated; nevertheless, they often are unstable. On the other hand, site-directed mutant strains have also been obtained, but they increase only the yield of non-astaxanthin carotenoids. In this review, we insightfully analyze the metabolic carbon flow converging in astaxanthin biosynthesis and, by integrating the biological features of X. dendrorhous with available metabolic, genomic, transcriptomic, and proteomic data, as well as the knowledge gained with random and site-directed mutants that lead to increased carotenoids yield, we propose new metabolic engineering targets to increase astaxanthin biosynthesis.


2017 ◽  
Vol 83 (17) ◽  
Author(s):  
Michael T. Guarnieri ◽  
Yat-Chen Chou ◽  
Davinia Salvachúa ◽  
Ali Mohagheghi ◽  
Peter C. St. John ◽  
...  

ABSTRACT Actinobacillus succinogenes, a Gram-negative facultative anaerobe, exhibits the native capacity to convert pentose and hexose sugars to succinic acid (SA) with high yield as a tricarboxylic acid (TCA) cycle intermediate. In addition, A. succinogenes is capnophilic, incorporating CO2 into SA, making this organism an ideal candidate host for conversion of lignocellulosic sugars and CO2 to an emerging commodity bioproduct sourced from renewable feedstocks. In this work, we report the development of facile metabolic engineering capabilities in A. succinogenes, enabling examination of SA flux determinants via knockout of the primary competing pathways—namely, acetate and formate production—and overexpression of the key enzymes in the reductive branch of the TCA cycle leading to SA. Batch fermentation experiments with the wild-type and engineered strains using pentose-rich sugar streams demonstrate that the overexpression of the SA biosynthetic machinery (in particular, the enzyme malate dehydrogenase) enhances flux to SA. Additionally, removal of competitive carbon pathways leads to higher-purity SA but also triggers the generation of by-products not previously described from this organism (e.g., lactic acid). The resultant engineered strains also lend insight into energetic and redox balance and elucidate mechanisms governing organic acid biosynthesis in this important natural SA-producing microbe. IMPORTANCE Succinic acid production from lignocellulosic residues is a potential route for enhancing the economic feasibility of modern biorefineries. Here, we employ facile genetic tools to systematically manipulate competing acid production pathways and overexpress the succinic acid-producing machinery in Actinobacillus succinogenes. Furthermore, the resulting strains are evaluated via fermentation on relevant pentose-rich sugar streams representative of those from corn stover. Overall, this work demonstrates genetic modifications that can lead to succinic acid production improvements and identifies key flux determinants and new bottlenecks and energetic needs when removing by-product pathways in A. succinogenes metabolism.


2014 ◽  
Vol 23 ◽  
pp. 22-33 ◽  
Author(s):  
Youqiang Xu ◽  
Haipei Chu ◽  
Chao Gao ◽  
Fei Tao ◽  
Zikang Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document