scholarly journals Depth resolved near-surface residual stresses in γ-based TiAl before and after high-temperature exposure

2017 ◽  
Vol 84 ◽  
pp. 103-111 ◽  
Author(s):  
J.D.H. Paul ◽  
M. Oehring ◽  
F. Appel ◽  
F. Pyczak
Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 643
Author(s):  
Xuhang Zhou ◽  
Qiulin Tan ◽  
Xiaorui Liang ◽  
Baimao Lin ◽  
Tao Guo ◽  
...  

Performing high-temperature measurements on the rotating parts of aero-engine systems requires wireless passive sensors. Surface acoustic wave (SAW) sensors can measure high temperatures wirelessly, making them ideal for extreme situations where wired sensors are not applicable. This study reports a new SAW temperature sensor based on a langasite (LGS) substrate that can perform measurements in environments with temperatures as high as 1300 °C. The Pt electrode and LGS substrate were protected by an AlN passivation layer deposited via a pulsed laser, thereby improving the crystallization quality of the Pt film, with the function and stability of the SAW device guaranteed at 1100 °C. The linear relationship between the resonant frequency and temperature is verified by various high-temperature radio-frequency (RF) tests. Changes in sample microstructure before and after high-temperature exposure are analyzed using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The analysis confirms that the proposed AlN/Pt/Cr thin-film electrode has great application potential in high-temperature SAW sensors.


1989 ◽  
Vol 170 ◽  
Author(s):  
Håkan A. Swan ◽  
Colette O'meara

AbstractPreliminary creep tests were performed on SiC whisker reinforced and matrix Si3N4 material fabricated by the NPS technique. The material was extensively crystallised in the as received material, leaving only thin amorphous films surrounding the grains. No improvement in the creep resistance could be detected for the whisker reinforced material. The deformation mechanisms were found to be that of cavitation in the form of microcracks, predominantly at the whisker/matrix interfaces, and the formation of larger cracks. Extensive oxidation of the samples, as a result of high temperature exposure to air, was observed for the materials tested at 1375°C.


1994 ◽  
Vol 116 (4) ◽  
pp. 550-555 ◽  
Author(s):  
M. Gremaud ◽  
W. Cheng ◽  
I. Finnie ◽  
M. B. Prime

Introducing a thin cut from the surface of a part containing residual stresses produces a change in strain on the surface. When the strains are measured as a function of the depth of the cut, residual stresses near the surface can be estimated using the compliance method. In previous work, the unknown residual stress field was represented by a series of continuous polynomials. The present paper shows that for stress states with steep gradients, superior predictions are obtained by using “overlapping piecewise functions” to represent the stresses. The stability of the method under the influence of random errors and a zero shift is demonstrated by numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document