Involvement of phosphatidylinositol-phospholipase C in immune response to Salmonella lipopolysacharide in chicken macrophage cells (HD11)

2006 ◽  
Vol 6 (12) ◽  
pp. 1780-1787 ◽  
Author(s):  
Haiqi He ◽  
Kenneth J. Genovese ◽  
David J. Nisbet ◽  
Michael H. Kogut
Animals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 307
Author(s):  
Fei Wang ◽  
Qinghe Li ◽  
Qiao Wang ◽  
Maiqing Zheng ◽  
Jie Wen ◽  
...  

Salmonellosis is a zoonosis that is not only harmful to the health of poultry but also poses a threat to human health. Although many measures have been put in place to reduce morbidity, they have not provided satisfactory results. Therefore, it is necessary to clarify the immune mechanisms involved in improving the resistance of chickens against Salmonella. BTB (Broad-complex Tramtrack and Bric-a-brac) Speckle-type POZ (poxvirus and zinc finger) protein (SPOP) regulates protein expression by promoting substrate ubiquitination and degradation. The correlation between SPOP expression and the immune response has not been fully described. Therefore, the aim of this study was to clarify this relationship. In vitro, we stimulated chicken macrophage cells (HD11) with lipopolysaccharide, then analyzed the correlation between SPOP and IL1β or IL8 expression using quantitative real-time polymerase chain reaction (qRT-PCR). In vivo, we infected 7-days-old chickens with Salmonella Typhimurium, then analyzed the association between SPOP expression and the immune response, including IL1β and IL8 expression, IgA production, and bacterial loads. We found that SPOP may participate in the regulation of the immune response in macrophage cells. SPOP expression was negatively correlated with IL-1β and IL-8 expression both in vivo and in vitro. SPOP expression was also negatively related to bacterial loads and immunoglobulin (Ig) A production. These results indicate that SPOP may have important functions in the response to Salmonella infection.


1990 ◽  
Vol 68 (9) ◽  
pp. 1112-1118 ◽  
Author(s):  
Lee Kihn ◽  
Dorothy Rutkowski ◽  
Robert A. Stinson

As assessed by incorporation into liposomes and by adsorption to octyl-Sepharose, the integrity of the membrane anchor for the purified tetrameric forms of alkaline phosphatase from human liver and placenta was intact. Any treatment that resulted in a dimeric enzyme precluded incorporation and adsorption. An intact anchor also allowed incorporation into red cell ghosts. The addition of hydrophobic proteins inhibited incorporation into liposomes to varying degrees. Alkaline phosphatase was 100% releasable from liposomes and red cell ghosts by a phospholipase C specific for phosphatidylinositol. There was no appreciable difference in the rates of release of placental and liver alkaline phosphatases, although both were approximately 250 × slower in liposomes and 100 × slower in red cell ghosts than the enzyme's release from a suspension of cultured osteosarcoma cells. Both enzymes were released by phosphatidylinositol phospholipase C as dimers and would not reincorporate or adsorb to octyl-Sepharose. However, the enzyme incorporated, resolubilized by Triton X-100, and cleansed of the detergent by butanol treatment was tetrameric by gradient gel electrophoresis, was hydrophobic, and could reincorporate into fresh liposomes. A monoclonal antibody to liver alkaline phosphatase inhibited the enzyme's incorporation into liposomes, and abolished its release from liposomes and its conversion to dimers by phosphatidylinositol phospholipase C.Key words: alkaline phosphatase, liposome, phosphatidylinositol, membrane anchor.


2020 ◽  
Vol 7 (4) ◽  
pp. 191561 ◽  
Author(s):  
Shan Zhang ◽  
Shu Wu ◽  
Yiru Shen ◽  
Yunqi Xiao ◽  
Lizeng Gao ◽  
...  

Magnetic Fe 3 O 4 nanoparticles (Fe 3 O 4 -NPs) have been widely investigated for their biomedical applications. The main purpose of this study was to evaluate the cytotoxic effects of different sizes of Fe 3 O 4 -NPs in chicken macrophage cells (HD11). Experimental groups based on three sizes of Fe 3 O 4 -NPs (60, 120 and 250 nm) were created, and the Fe 3 O 4 -NPs were added to the cells at different doses according to the experimental group. The cell activity, oxidative index (malondialdehyde (MDA), superoxide dismutase (SOD) and reactive oxygen species (ROS)), apoptosis and pro-inflammatory cytokine secretion level were detected to analyse the cytotoxic effects of Fe 3 O 4 -NPs of different sizes in HD11 cells. The results revealed that the cell viability of the 60 nm Fe 3 O 4 -NPs group was lower than those of the 120 and 250 nm groups when the same concentration of Fe 3 O 4 -NPs was added. No significant difference in MDA was observed among the three Fe 3 O 4 -NP groups. The SOD level and ROS production of the 60 nm group were significantly greater than those of the 120 and 250 nm groups. Furthermore, the highest levels of apoptosis and pro-inflammatory cytokine secretion were caused by the 60 nm Fe 3 O 4 -NPs. In conclusion, the smaller Fe 3 O 4 -NPs produced stronger cytotoxicity in chicken macrophage cells, and the cytotoxic effects may be related to the oxidative stress and apoptosis induced by increased ROS production as well as the increased expression of pro-inflammatory cytokines.


2020 ◽  
Vol 51 (1) ◽  
Author(s):  
Lianci Peng ◽  
Maaike R. Scheenstra ◽  
Roel M. van Harten ◽  
Henk P. Haagsman ◽  
Edwin J. A. Veldhuizen

Abstract Cathelicidins (CATHs) play an important role in the innate immune response against microbial infections. Among the four chicken cathelicidins, CATH-B1 is studied the least. In this study, the effect of CATH-B1 on the macrophage response towards avian pathogenic E. coli (APEC) and bacterial ligands was investigated. Our results show that APEC induced CATH-B1 gene expression in both a chicken macrophage cell line (HD11 cells) and primary macrophages, while expression of the other three CATHs was virtually unaffected. While the antimicrobial activity of CATH-B1 is very low under cell culture conditions, it enhanced bacterial phagocytosis by macrophages. Interestingly, CATH-B1 downregulated APEC-induced gene expression of pro-inflammatory cytokines (IFN-β, IL-1β, IL-6 and IL-8) in primary macrophages. In addition, CATH-B1 pre-incubated macrophages showed a significantly higher gene expression of IL-10 after APEC challenge, indicating an overall anti-inflammatory profile for CATH-B1. Using isothermal titration calorimetry (ITC), CATH-B1 was shown to bind LPS. This suggests that CATH-B1 reduces toll like receptor (TLR) 4 dependent activation by APEC which may partly explain the decreased production of pro-inflammatory cytokines by macrophages. On the contrary, direct binding of CATH-B1 to ODN-2006 enhanced the TLR21 dependent activation of macrophages as measured by nitric oxide production. In conclusion, our results show for the first time that CATH-B1 has several immunomodulatory activities and thereby could be an important factor in the chicken immune response.


1991 ◽  
Vol 57 (1) ◽  
pp. 128-130 ◽  
Author(s):  
Jonathan K.C. Chiu ◽  
W.Peter Aston ◽  
June S. Chadwick

Sign in / Sign up

Export Citation Format

Share Document