chicken macrophage
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 24)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Vol 22 (3) ◽  
pp. 433-439
Author(s):  
Yogendra Singh ◽  
Patel Nikunjkumar ◽  
Beenam Saxena ◽  
Saravanan Ramakrisnan

In present study, the effect of Nigella sativa seeds extract on the chicken peripheral blood mononuclear cells (PBMCs) was investigated. The chicken PBMCs were stimulated with two different doses (125?g/ml; 250?g/ml) of Nigella sativa seeds extract and the cells were harvested at different time points till 48h post-stimulation for analysis of iNOS gene expression by quantitative PCR and nitric oxide (NO) estimation at 24 and 48h post-stimulation. High dose (250?g/ml) of Nigella sativa seed extract showed remarkable induction of iNOS transcripts expression and NO production at 48h post-stimulation, which were 12.8040±1.03347 folds and 5.7089±.64535µM respectively. The results indicated the immunostimulatory potential of the Nigella sativa seed extract on the chicken PBMCs.


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1829
Author(s):  
Yangfeng Chen ◽  
Zhijun Wang ◽  
Xiaolan Chen ◽  
Xi Peng ◽  
Qinghua Nie

Disordered inflammation and apoptosis are closely related to diseases, and inflammation can also promote cell apoptosis, where growing evidence has shown that circular RNAs (circRNAs) play important roles. Lipopolysaccharide (LPS) is the main component of the cytoderm of gram-negative bacterium, which can cause inflammatory responses in macrophages. We constructed an inflammatory model by exposing chicken macrophage cell lines (also known as HD11) to LPS for in vitro experiments. In this study, we validated a novel circRNA—circNFIC—which was dramatically up-regulated in tissues infected by coccidia and cells exposed to LPS. Besides, circNFIC could significantly promote the expression levels of pro-inflammation factors, including (IL-1β, TNFα, and IFNγ) and pro-apoptosis maker genes (caspase 3 and caspase 8) in HD11 exposed to LPS or not. In terms of mechanism, circNFIC exerted notable effects on DENND1B to regulate cell inflammation and apoptosis by sponging miR-30e-3p. The molecular functions played by miR-30e-3p and DENND1B have been explored, respectively. In addition, the effects of circNFIC knockdown suppressing the expression of pro-inflammatory and pro-apoptosis functions could be reversed by a miR-30e-3p inhibitor. On the whole, circNFIC promoted cell inflammation and apoptosis via the miR-30e-3p/DENND1B axis.


2021 ◽  
Vol 136 ◽  
pp. 110-117
Author(s):  
Yu Bai ◽  
Xinhua Cui ◽  
Xueli Gao ◽  
Chaonan Liu ◽  
Xiaoping Lv ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250296
Author(s):  
Anamika Gupta ◽  
Mohit Bansal ◽  
Rohana Liyanage ◽  
Abhinav Upadhyay ◽  
Narayan Rath ◽  
...  

Salmonella Enteritidis is an intracellular foodborne pathogen that has developed multiple mechanisms to alter poultry intestinal physiology and infect the gut. Short chain fatty acid butyrate is derived from microbiota metabolic activities, and it maintains gut homeostasis. There is limited understanding on the interaction between S. Enteritidis infection, butyrate, and host intestinal response. To fill this knowledge gap, chicken macrophages (also known as HTC cells) were infected with S. Enteritidis, treated with sodium butyrate, and proteomic analysis was performed. A growth curve assay was conducted to determine sub-inhibitory concentration (SIC, concentration that do not affect bacterial growth compared to control) of sodium butyrate against S. Enteritidis. HTC cells were infected with S. Enteritidis in the presence and absence of SIC of sodium butyrate. The proteins were extracted and analyzed by tandem mass spectrometry. Our results showed that the SIC was 45 mM. Notably, S. Enteritidis-infected HTC cells upregulated macrophage proteins involved in ATP synthesis through oxidative phosphorylation such as ATP synthase subunit alpha (ATP5A1), ATP synthase subunit d, mitochondrial (ATP5PD) and cellular apoptosis such as Cytochrome-c (CYC). Furthermore, sodium butyrate influenced S. Enteritidis-infected HTC cells by reducing the expression of macrophage proteins mediating actin cytoskeletal rearrangements such as WD repeat-containing protein-1 (WDR1), Alpha actinin-1 (ACTN1), Vinculin (VCL) and Protein disulfide isomerase (P4HB) and intracellular S. Enteritidis growth and replication such as V-type proton ATPase catalytic subunit A (ATPV1A). Interestingly, sodium butyrate increased the expression of infected HTC cell protein involving in bacterial killing such as Vimentin (VIM). In conclusion, sodium butyrate modulates the expression of HTC cell proteins essential for S. Enteritidis invasion.


Parasitology ◽  
2021 ◽  
Vol 148 (6) ◽  
pp. 712-725
Author(s):  
Arnar K. S. Sandholt ◽  
Feifei Xu ◽  
Robert Söderlund ◽  
Anna Lundén ◽  
Karin Troell ◽  
...  

Abstract


Vaccines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 122
Author(s):  
Nam-Hyung Kim ◽  
Dae-Sung Ko ◽  
Eun-Jin Ha ◽  
Sunmin Ahn ◽  
Kang-Seuk Choi ◽  
...  

The live attenuated vaccine strain, SG9R, has been used against fowl typhoid worldwide, but it can revert to the pathogenic smooth strain owing to single nucleotide changes such as nonsense mutations in the rfaJ gene. As SG9R possesses an intact Salmonella plasmid with virulence genes, it exhibits dormant pathogenicity and can cause fowl typhoid in young chicks and stressed or immunocompromised brown egg-laying hens. To tackle these issues, we knocked out the rfaJ gene of SG9R (named Safe-9R) to eliminate the reversion risk and generated detoxified strains of Safe-9R by knocking out lpxL, lpxM, pagP, and phoP/phoQ genes to attenuate the virulence. Among the knockout strains, live ΔlpxL- (Dtx-9RL) and ΔlpxM-9R (Dtx-9RM) strains induced remarkably less expression of inflammatory cytokines in chicken macrophage cells, and oil emulsion (OE) Dtx-9RL did not cause body weight loss in chicks. Live Dtx-9RM exhibited efficacy against field strain challenge in one week without any bacterial re-isolation, while the un-detoxified strains showed the development of severe liver lesions and re-isolation of challenged strains. Thus, SG9R was optimally detoxified by knockout of lpxL and lpxM, and Dtx-9RL and Dtx-9RM might be applicable as OE and live vaccines, respectively, to prevent fowl typhoid irrespective of the age of chickens.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Xiaoqi Sun ◽  
Zheng Wang ◽  
Changhao Shao ◽  
Jia Yu ◽  
Haoyun Liu ◽  
...  

AbstractInfectious bronchitis virus (IBV) is a pathogenic coronavirus with high morbidity and mortality in chicken breeding. Macrophages with normal biofunctions are essential for host immune responses. In this study, the HD11 chicken macrophage cell line and chicken peripheral blood mononuclear cell-derived macrophages (PBMCs-Mφ) were infected with IBV at multiplicity of infection (MOI) of 10. The dynamic changes of their biofunctions, including cell viability, pathogen elimination function, phagocytic ability, and gene expressions of related proteins/mediators in innate and acquired immunity, inflammation, autophagy and apoptosis were analyzed. Results showed that IBV infection decreased chicken macrophage viability and phagocytic ability, and increased pathogen elimination function. Moreover, IBV augmented the gene expressions of most related proteins in macrophages involved in multiple host bioprocesses, and the dynamic changes of gene expressions had a close relationship with virus replication. Among them, MHCII, Fc receptor, TLR3, IFN-α, CCL4, MIF, IL-1β, IL-6, and iNOS showed significantly higher expressions in IBV-infected cells. However, TLR7, MyD88, MDA5, IFN-γ, MHCII, Fc receptor, MARCO, CD36, MIF, XCL1, CXCL12, TNF-α, iNOS, and IL-10 showed early decreased expressions. Overall, chicken macrophages play an important role in host innate and acquired immune responses to resist IBV infection, despite early damage or suppression. Moreover, the IBV-induced autophagy and apoptosis might participate in the virus-host cell interaction which is attributed to the biological process.


2020 ◽  
Vol 57 (4) ◽  
Author(s):  
Katja Ester ◽  
William Lauman Ragland

Immunosuppressive viruses cause substantial economic losses to the poultry industry. Chicken anaemia virus (CAV) causes severe disease in young chickens, whereas subclinical infection in older birds causes immunosuppression. In this study, we addressed the ability of CAV to interfere with production of antimicrobial molecule nitric oxide (NO) by macrophages. NO production in chicken macrophage cell line HD11 was induced using both Toll-like receptor 4 agonist, bacterial lipopolysaccharide, and an immune modulator, interferon-γ. In addition, we treated macrophages with CAV propagated in chicken lymphoblastoid cells. The levels of NO were measured by the Griess reaction. Addition of CAV decreased both the interferon-γ and the lipopolysaccharide associated induction of NO. Observed effect was not caused by CAV-related cytotoxicity, as no decrease in number of viable cells was observed. Although CAV could not completely abrogate NO production, attenuation of NO induction was clearly present. We have previously shown that CAV interferes with the expression of interferons in chickens during subclinical infection. Since the signalling pathways of expression of interferons and type 2 nitric oxide synthase, enzyme involved in NO formation, overlap, we conclude that measured decrease in NO levels is a consequence of CAV interference with interferon and NO synthase signalling. Regardless of the fact whether the attenuation of NO serves as a viral primary defence, or is only a secondary effect, it could impair the immune response to other pathogens and contribute to the global immunosuppression in chicken houses.Key words: chicken; immunosuppression; chicken anaemia virus (CAV); macrophage; nitric oxide (NO) VIRUS PIŠČANČJE ANEMIJE VPLIVA NA PROIZVODNJO DUŠIKOVIH OKSIDOV V MAKROFAGIH PIŠČANEV HD11 Povzetek: Imunosupresivni virusi povzročajo velike gospodarske izgube v perutninski industriji. Virus piščančje anemije (CAV) pri mladih piščancih povzroča hudo bolezen, medtem ko subklinična okužba pri starejših pticah povzroča oslabljen imunski odziv. V tej raziskavi je bil spremljan vpliv CAV na proizvodnjo dušikovih oksidov (NO) v makrofagih. Proizvodnja NO v piščančjih makrofagih v celični liniji HD11 je bila sprožena z uporabo agonista Toll-u podobnega receptorja 4, bakterijskega lipopolisaharida in imunskega modulatorja interferona-γ, makrofagi pa so bili okuženi s CAV, razmnoženim v piščančjih limfoblastoidnih celicah. Ravni NO so izmerili po Griessovi reakciji. Prisotnost CAV je zmanjšala proizvodnjo NO, spodbujeno tako z interferonom-γ, kot z lipopolisaharidom. Opaženega učinka ni povzročila citotoksičnost, povezana s CAV, saj ni bilo opaziti zmanjšanja števila živih celic. Čeprav CAV ni popolnoma zavrla nastajanja NO, je bilo očitno prisotno zmanjšanje nastajanja NO. Pred tem so pokazali, da CAV moti izražanje interferonov pri piščancih med subklinično okužbo. Ker se poti znotrajceličnega prenosa urejanja izražanja interferonov in sintaze dušikovih oksidov tipa 2, encima, ki sodeluje pri tvorbi NO, prekrivajo, predvidevamo, da je izmerjeno znižanje ravni NO posledica motenj CAV pri znotrajceličnem prenosu sporočila interferona do sintaze dušikovih oksidov. Ne glede na to, ali zaviranje nastajanja NO služi kot primarna virusna obramba ali je le sekundarni učinek, lahko poslabša imunski odziv na druge patogene in prispeva k splošnemu zmanjšanju imunskega odziva v kurnikih ali na kokošjih farmah.Ključne besede: piščanci; zmanjšanje imunskega odziva; virus piščančje anemije (CAV); makrofagi; dušikov oksid (NO)


2020 ◽  
Vol 132 ◽  
pp. 81-87 ◽  
Author(s):  
Yeojin Hong ◽  
Jiae Lee ◽  
Thi Hao Vu ◽  
Sooyeon Lee ◽  
Hyun S. Lillehoj ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document