Real-time random delay compensation with prediction-based digital redesign

2011 ◽  
Vol 50 (2) ◽  
pp. 207-212 ◽  
Author(s):  
Yongpeng Zhang ◽  
Penrose Cofie ◽  
Augustine N. Ajuzie ◽  
Jian Zhang ◽  
Cajetan M. Akujuobi
1985 ◽  
Vol 59 (4) ◽  
pp. 1137-1144 ◽  
Author(s):  
R. Kraemer ◽  
B. Meister

To apply real-time moment-ratio analysis to multibreath N2-washout curves (MBNW) from children, a new processor-controlled device was constructed. Flow and fractional N2 concentration (FN2) were each sampled by 200 Hz. An electromagnetic triple-valve system, with an instrumental dead space of 36 ml and a valve resistance of 0.3 cmH2O . l-1 . s, was connected in series with a pneumotachograph and an N2 analyzer (Ohio 720) placed next to the mouthpiece. A FORTRAN/MACRO program on a PDP 11/23 computer enabled measurement of inspiratory and expiratory flow and FN2 sampling by a 12-bit analog-to-digital converter. The fast real-time digital processing of the N2 and flow signals incorporated filtering, delay compensation, and corrections for the effects of changes in gas composition and temperature. MBNW dynamics of the lungs were studied in 17 healthy and 28 asthmatic children and in 16 patients with cystic fibrosis, evaluating the moment ratios of the washout curves as indices of the ventilation characteristics. Intrasubject variability of the moment ratios (m1/m0, m2/m0) and determination of functional residual capacity (FRC) varied between 6.3 and 14.7% (depending on which parameter is considered) and was comparatively lower than other indices previously investigated in adults. In addition, the sensitivity of the moment ratios for discriminating different stages of ventilation inhomogeneity was superior to other indices. m2/m0 is closely related to the simultaneously measured airway resistance, and the ratio between cumulative expired volume and FRC is correlated with the ratio between residual volume and total lung capacity.


2021 ◽  
Author(s):  
Erhan Sezgin ◽  
Anurag Mohapatra ◽  
Vedran S. Peric ◽  
Ozgül Salor ◽  
Thomas Hamacher

<i>The paper has been submitted to PSCC 2022 and is currently awaiting reviews.<br></i><br>This paper proposes and implements, a harmonic analysis algorithm for microgrid Power Hardware-in-the-loop (PHIL) experiments, when the point of common coupling (PCC) voltage cannot be directly wired to the local prosumer controllers due to long distances between them. Using frequency-shifting and filtering ideas, the voltage measurement is converted to magnitude and phase information. This is passed over an asynchronous communication link to another controller, where it is recovered into a waveform after delay compensation. The method allows for accurate power calculations and grid synchronization over distributed prosumer controllers. The proposed method can work at different execution rates depending on real time (RT) workload and is shown to be robust against step changes, harmonics and communication delays. The method is demonstrated with two PHIL experiments at the CoSES, TU Munich lab in grid connected and island mode.


2008 ◽  
Vol 4 (6) ◽  
pp. 809-828 ◽  
Author(s):  
Juan E. Carrion ◽  
B.F. Jr. Spencer

2020 ◽  
Vol 10 (20) ◽  
pp. 7101
Author(s):  
Xizhan Ning ◽  
Zhen Wang ◽  
Bin Wu

Real-time hybrid simulation (RTHS) is a versatile, effective, and promising experimental method used to evaluate the structural performance under dynamic loads. In RTHS, the emulated structure is divided into a numerically simulated substructure (NS) and a physically tested substructure (PS), and a transfer system is used to ensure the force equilibrium and deformation compatibility between the substructures. Owing to the inherent dynamics of the PS and transfer system (referred to as a control plant in this study), there is a time-delay between the displacement command and measurement. This causes de-synchronization between the boundary of the PS and NS, and affects the stability and accuracy of the RTHS. In this study, a Kalman filter-based adaptive delay compensation (KF-ADC) method is proposed to address this issue. In this novel method, the control plant is represented by a discrete-time model, whose coefficients are time-varying and are estimated online by the KF using the displacement commands and measurements. Based on this time-varying model, the delay compensator is constructed employing the desired displacements. The KF performance is investigated theoretically and numerically. To assess the performance of the proposed strategy, a series of virtual RTHSs are performed on the Benchmark problem in RTHS, which was based on an actual experimental system. Meanwhile, several promising delay-compensation strategies are employed for comparison. Results reveal that the proposed time-delay compensation method effectively enhances the accuracy, stability, and robustness of RTHS.


Sign in / Sign up

Export Citation Format

Share Document