Optimal damping for generalized unified power flow controller equipped single machine infinite bus system for addressing low frequency oscillation

Author(s):  
Md. Maksudur Rahman ◽  
Ashik Ahmed ◽  
Md. Mehedi Hassan Galib ◽  
Md. Moniruzzaman
Author(s):  
S.Ali Abbas Al-Mawsawi ◽  
Anwer Haider ◽  
S.Ahmed Al-gallaf

<p>In this paper a new optimization algorithm, the biogeography based optimization (BBO) is employed to design a robust power oscillation damping (POD) controller using unified power flow controller (UPFC). The controller that is used to damp low frequency oscillation is designed over a wide range of operating points using two different objective functions. The obtained controllers are then verified through time-domain simulation over different loading conditions with different system uncertainties introduced.</p>


2021 ◽  
Vol 2087 (1) ◽  
pp. 012001
Author(s):  
Wei Yan ◽  
Yunbang Sun

Abstract In the actual power system with hydropower, long-time and ultra-low frequency oscillation events occur many times. It is found that the unreasonable setting of governor parameters is an important reason for the oscillation. Firstly, the single machine on load system model is used to analyse the relationship between the PID parameters of the governor and the system stability, then the relationship between oscillation mode and PID parameters of governor is analyzed by eigenvalue analysis method, and the negative damping provided by speed regulation system is analyzed by damping torque method, and then the particle swarm optimization algorithm is used to optimize the PID parameters. Through the analysis of the step response of the single machine system before and after the optimization and the damping torque coefficient provided by the speed regulation system, it shows the effectiveness of the optimization algorithm. Finally, in the simulation platform MATLAB/SIMULINK, a single machine load system model which is closer to the actual power grid is built. The governor parameters of the generator are simulated and verified, and the PID parameters are adjusted by using the parameters obtained by the optimization algorithm. The results show that the optimized parameters have a good suppression for the ultra-low frequency oscillation.


2013 ◽  
Vol 768 ◽  
pp. 392-397 ◽  
Author(s):  
B. Gopinath ◽  
S. Suresh Kumar ◽  
Juvan Michael

Flexible AC transmission system (FACTS) is a system composed of static equipments used for ac transmission of electric energy to improve the power transfer capability and to enhance controllability of interconnected network. Unified Power Flow Controller (UPFC) is the most widely used FACTS device for providing fast acting reactive power compensation on high voltage electricity transmission network. This paper deals with the designing of Adaptive Neuro Fuzzy Inference controller (ANFIC) and fuzzy based Particle Swarm Optimization (PSO) controller for the performance analysis of UPFC. The controller have been designed and tested for controlling the real and reactive power of UPFC. Fuzzy-PI controller is used to control the shunt part of UPFC. The system response under high short circuit level is tested on 5-bus system and 118-bus system. Computer simulation by MATLAB/SIMULINK has been used to verify proposed control strategies.


2011 ◽  
Vol 403-408 ◽  
pp. 3594-3599
Author(s):  
R. Selvarasu ◽  
C.Christober Asir Rajan

This paper presents the modeling and simulation of 14-bus system using TCSC and UPFC. Thyristor Controlled Series Compensator (TCSC) and Unified Power Flow Controller (UPFC) are included in 14-bus system to improve the power quality of the power system. The voltage sag is created by adding an extra load at the receiving end. This sag is compensated by using FACTS devices like TCSC and UPFC. Improvement in the voltage and power are presented using simulation studies.


Author(s):  
M. Yousefi Anarkooli ◽  
H. Afrakhteh

<p>Low frequency oscillation (LFO) is a negative phenomenon repeated for the power system increases the risk of instability. In recent years, power systems stabilizer (PSS) for damping low frequency oscillations is used. With FACTS devices such as integrated power flow controller (UPFC) can control power flow and  transient   stability increase.  So, UPFC low   frequency oscillation damping can be used instead of PSS. UPFC through direct control voltage and low frequency oscillation damping can be improved. In this study, a single linear model of synchronous machine connected to an infinite bus Heffron-Philips in the presence of UPFC to improve low frequency oscillation damping is used. The selection of the output feedback parameters for the UPFC controllers is converted to an optimization problem which is solved by cuckoo optimization algorithm (COA). COA, as a new evolutionary optimization algorithm, is used in multiple applications. This optimization algorithm has a strong ability to find the most optimistic results for dynamic stability improvement. The controller UPFC and damping in MATLAB software environment is designed and simulated. The simulation was performed for a variety of loads and for various loads and more effective UPFC controller electromechanical oscillation damping compared to other algorithm types is shown.</p>


2014 ◽  
Vol 596 ◽  
pp. 692-695
Author(s):  
Shi Wu Xiao ◽  
Cong Wang

Based on PSCAD software, a user-defined governor model is set up. Single machine infinite bus system and four machine two regional system are taken as examples based on PSCAD and the elements’ parameters are set on the test results of a power plant in southern China. By analyzing the model of speed governing system and changing governor parameters’ value, mechanistic study leading to low frequency oscillation is studied in the paper.


Sign in / Sign up

Export Citation Format

Share Document