scholarly journals Empirical evidence on the impact of urban overheating on building cooling and heating energy consumption

iScience ◽  
2021 ◽  
pp. 102495
Author(s):  
Mi Aye Su ◽  
Jack Ngarambe ◽  
Mat Santamouris ◽  
Geun Young Yun
2021 ◽  
pp. 111657
Author(s):  
Marina Laskari ◽  
Rosa-Francesca de Masi ◽  
Stavroula Karatasou ◽  
Mat Santamouris ◽  
Margarita-Niki Assimakopoulos

Buildings ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 21 ◽  
Author(s):  
Khadija Jnat ◽  
Isam Shahrour ◽  
Ali Zaoui

Energy consumption in the social housing sector constitutes a major economic, social, and environmental issue, because in some countries such as France, social housing accounts for about 19% of the housing sector. In addition, this sector suffers from ageing, which results in high energy consumption, deterioration in the occupant quality of life, and high pressure on the budget of low-income occupants. The reduction of the energy consumption in this sector becomes a “must”. This reduction can be achieved through energy renovation and innovation in both energy management and occupant involvement by using smart technology. This paper presents a contribution to this goal through the investigation of the impact of smart monitoring on energy savings. The research is based on monitoring of comfort conditions in an occupied social housing residence in the North of France and the use of building thermal numerical modeling. Results of monitoring show that the indoor temperature largely exceeds the regulations requirements and the use of a smart system together with occupant involvement could lead to significant savings in heating energy consumption. The novelty in this paper concerns the use of comfort data from occupied social housing residence, occupation conditions, and building thermal modeling to estimate energy savings. The proposed methodology could be easily implemented to estimate heating energy savings in social housing buildings that lack individual energy consumption monitoring.


Author(s):  
Shiyi Song ◽  
Hong Leng ◽  
Han Xu ◽  
Ran Guo ◽  
Yan Zhao

This study aims to acquire a better understanding of the quantitative relationship between environmental impact factors and heating energy consumption of buildings in severe cold regions. We analyze the effects of five urban morphological parameters (building density, aspect ratio, building height, floor area ratio, and shape factor) and three climatic parameters (temperature, wind speed, and relative humidity) on the heating energy use intensity (EUI) of commercial and residential buildings in a severe cold region. We develop regression models using empirical data to quantitatively evaluate the impact of each parameter. A stepwise approach is used to ensure that all the independent variables are significant and to eliminate the effects of multicollinearity. Finally, a spatial cluster analysis is performed to identify the distribution characteristics of heating EUI. The results indicate that the building height, shape factor, temperature, and wind speed have a significant impact on heating EUI, and their effects vary with the type of building. The cluster analysis indicated that the areas in the north, east, and along the river exhibited high heating EUI. The findings obtained herein can be used to evaluate building energy efficiency for urban planners and heating companies and departments based on the surrounding environmental conditions.


Sign in / Sign up

Export Citation Format

Share Document