scholarly journals Validation of Suomi-NPP VIIRS sea ice concentration with very high-resolution satellite and airborne camera imagery

2017 ◽  
Vol 130 ◽  
pp. 122-138 ◽  
Author(s):  
Daniel Baldwin ◽  
Mark Tschudi ◽  
Fabio Pacifici ◽  
Yinghui Liu
2020 ◽  
Author(s):  
Yi-Ran Wang ◽  
Xiao-Ming Li

Abstract. Widely used sea ice concentration and sea ice cover in polar regions are derived mainly from spaceborne microwave radiometer and scatterometer data, and the typical spatial resolution of these products ranges from several to dozens of kilometers. Due to dramatic changes in polar sea ice, high-resolution sea ice cover data are drawing increasing attention for polar navigation, environmental research, and offshore operations. In this paper, we focused on developing an approach for deriving a high-resolution sea ice cover product for the Arctic using Sentinel-1 (S1) dual-polarization (horizontal-horizontal, HH, and horizontal-vertical, HV) data in extra wide swath (EW) mode. The approach for discriminating sea ice from open water by synthetic aperture radar (SAR) data is based on a modified U-Net architecture, a deep learning network. By employing an integrated stacking model to combine multiple U-Net classifiers with diverse specializations, sea ice segmentation is achieved with superior accuracy over any individual classifier. We applied the proposed approach to over 28,000 S1 EW images acquired in 2019 to obtain sea ice cover products in a high spatial resolution of 400 m. By converting the S1-derived sea ice cover to concentration and then compared with Advanced Microwave Scanning Radiometer 2 (AMSR2) sea ice concentration data, showing an average absolute difference of 5.55 % with seasonal fluctuations. A direct comparison with Interactive Multisensor Snow and Ice Mapping System (IMS) daily sea ice cover data achieves an average accuracy of 93.98 %. These results show that the developed S1-derived sea ice cover results are comparable to the AMSR and IMS data in terms of overall accuracy but superior to these data in presenting detailed sea ice cover information, particularly in the marginal ice zone (MIZ). Data are available at: https://doi.org/10.11922/sciencedb.00273 (Wang and Li, 2020).


2014 ◽  
Vol 8 (5) ◽  
pp. 1639-1650 ◽  
Author(s):  
J. Karvonen

Abstract. We have studied the possibility of combining the high-resolution synthetic aperture radar (SAR) segmentation and ice concentration estimated by radiometer brightness temperatures. Here we present an algorithm for mapping a radiometer-based concentration value for each SAR segment. The concentrations are estimated by a multi-layer perceptron (MLP) neural network which has the AMSR-2 (Advanced Microwave Scanning Radiometer 2) polarization ratios and gradient ratios of four radiometer channels as its inputs. The results have been compared numerically to the gridded Finnish Meteorological Institute (FMI) ice chart concentrations and high-resolution AMSR-2 ASI (ARTIST Sea Ice) algorithm concentrations provided by the University of Hamburg and also visually to the AMSR-2 bootstrap algorithm concentrations, which are given in much coarser resolution. The differences when compared to FMI daily ice charts were on average small. When compared to ASI ice concentrations, the differences were a bit larger, but still small on average. According to our comparisons, the largest differences typically occur near the ice edge and sea–land boundary. The main advantage of combining radiometer-based ice concentration estimation and SAR segmentation seems to be a more precise estimation of the boundaries of different ice concentration zones.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1251
Author(s):  
Chang-Uk Hyun ◽  
Joo-Hong Kim ◽  
Hyangsun Han ◽  
Hyun-cheol Kim

Observing sea ice by very high-resolution (VHR) images not only improves the quality of lower-resolution remote sensing products (e.g., sea ice concentration, distribution of melt ponds and pressure ridges, sea ice surface roughness, etc.) by providing details on the ground truth of sea ice, but also assists sea ice fieldwork. In this study, two fieldwork-based methods are proposed, one for the practical acquisition of VHR images over drifting Arctic sea ice using low-cost commercial off-the-shelf (COTS) sensors equipped on a helicopter, and the other for quantifying the compensating effect from continuously drifting sea ice that reduces geolocation uncertainty in the image mosaicking procedure. The drifting trajectory of the target ice was yielded from that recorded by an icebreaker that was tightly anchored to the floe and was then used to reversely compensate the locations of acquired VHR images. After applying the compensation, three-dimensional geolocation errors of the VHR images were decreased by 79.3% and 24.2% for two pre-defined image groups, respectively. The enhanced accuracy of the imaging locations was affected by imaging duration causing variable drifting distances of individual images. Further applicability of the mosaicked VHR image was discussed by comparing it with a TerraSAR-X synthetic aperture radar image containing the target ice, suggesting that the proposed methods can be used for precise comparison with satellite remote sensing products.


2021 ◽  
Vol 13 (6) ◽  
pp. 2723-2742
Author(s):  
Yi-Ran Wang ◽  
Xiao-Ming Li

Abstract. Widely used sea ice concentration and sea ice cover in polar regions are derived mainly from spaceborne microwave radiometer and scatterometer data, and the typical spatial resolution of these products ranges from several to dozens of kilometers. Due to dramatic changes in polar sea ice, high-resolution sea ice cover data are drawing increasing attention for polar navigation, environmental research, and offshore operations. In this paper, we focused on developing an approach for deriving a high-resolution sea ice cover product for the Arctic using Sentinel-1 (S1) dual-polarization (horizontal-horizontal, HH, and horizontal-vertical, HV) data in extra wide swath (EW) mode. The approach for discriminating sea ice from open water by synthetic aperture radar (SAR) data is based on a modified U-Net architecture, a deep learning network. By employing an integrated stacking model to combine multiple U-Net classifiers with diverse specializations, sea ice segmentation is achieved with superior accuracy over any individual classifier. We applied the proposed approach to over 28 000 S1 EW images acquired in 2019 to obtain sea ice cover products in a high spatial resolution of 400 m. The validation by 96 cases of visual interpretation results shows an overall accuracy of 96.10 %. The S1-derived sea ice cover was converted to concentration and then compared with Advanced Microwave Scanning Radiometer 2 (AMSR2) sea ice concentration data, showing an average absolute difference of 5.55 % with seasonal fluctuations. A direct comparison with Interactive Multisensor Snow and Ice Mapping System (IMS) daily sea ice cover data achieves an average accuracy of 93.98 %. These results show that the developed S1-derived sea ice cover results are comparable to the AMSR and IMS data in terms of overall accuracy but superior to these data in presenting detailed sea ice cover information, particularly in the marginal ice zone (MIZ). Data are available at https://doi.org/10.11922/sciencedb.00273 (Wang and Li, 2020).


2021 ◽  
Author(s):  
Alexis Anne Denton ◽  
Mary-Louise Timmermans

Abstract. The sea-ice floe size distribution (FSD) characterizes the sea-ice response to atmosphere and ocean forcing and is important for understanding and modeling the evolving ice pack in a warming Arctic. FSDs are evaluated from 78 floe- segmented high-resolution (1-m) optical satellite images capturing a range of settings and sea-ice states during spring through fall from 1999 to 2014 in the Canada Basin. For any given image, the structure of the FSD is found to be sensitive to a classification threshold value (i.e., to specify an image pixel as being either water or ice) used in image segmentation, and an objective approach to minimize this sensitivity is presented. The FSDs are found to exhibit a single power-law regime between floe areas 50 m2 and 5 km2, characterized by exponents (slopes in log-log space) in the range −2.03 to −1.65. A distinct linear relationship between slopes and sea-ice concentrations is found, with steeper slopes (i.e., a larger proportion of smaller to larger floes) corresponding to lower sea-ice concentrations. Further, a seasonal variation in slopes is found for fixed sites in the Canada Basin that undergo a seasonal cycle in sea-ice concentration, while sites with extensive sea-ice cover year-round do not exhibit any seasonal change in FSD properties. Our results suggest that sea-ice concentration should be considered in any characterization of a time-varying FSD (for use in sea-ice models, for example).


2014 ◽  
Vol 8 (2) ◽  
pp. 2213-2241
Author(s):  
J. Karvonen

Abstract. We have studied the possibility of combining the high-resolution SAR segmentation and ice concentration estimated by radiometer brightness temperatures. Here we present an algorithm for mapping a radiometer-based concentration value for each SAR segment. The concentrations are estimated by a MLP neural network which has the AMSR-2 radiometer polarization ratios and gradient ratios of four radiometer channels as its inputs. The results have been compared numerically to the gridded FMI ice chart concentrations and high-resolution AMSR-2 ASI algorithm concentrations provided by University of Hamburg and also visually to the AMSR-2 bootstrap algorithm concentrations, which are given in much coarser resolution. The results when compared to FMI ice charts were very promising.


2021 ◽  
pp. 1-6
Author(s):  
Hao Luo ◽  
Qinghua Yang ◽  
Longjiang Mu ◽  
Xiangshan Tian-Kunze ◽  
Lars Nerger ◽  
...  

Abstract To improve Antarctic sea-ice simulations and estimations, an ensemble-based Data Assimilation System for the Southern Ocean (DASSO) was developed based on a regional sea ice–ocean coupled model, which assimilates sea-ice thickness (SIT) together with sea-ice concentration (SIC) derived from satellites. To validate the performance of DASSO, experiments were conducted from 15 April to 14 October 2016. Generally, assimilating SIC and SIT can suppress the overestimation of sea ice in the model-free run. Besides considering uncertainties in the operational atmospheric forcing data, a covariance inflation procedure in data assimilation further improves the simulation of Antarctic sea ice, especially SIT. The results demonstrate the effectiveness of assimilating sea-ice observations in reconstructing the state of Antarctic sea ice, but also highlight the necessity of more reasonable error estimation for the background as well as the observation.


Sign in / Sign up

Export Citation Format

Share Document