Mechanical properties and seismic behavior of confined masonry walls in freeze-thaw environment

Structures ◽  
2021 ◽  
Vol 31 ◽  
pp. 647-659
Author(s):  
Yan Zhou ◽  
Shansuo Zheng ◽  
Liuzhuo Chen ◽  
Li Long ◽  
Liguo Dong
2018 ◽  
Vol 186 ◽  
pp. 131-144 ◽  
Author(s):  
Lihua Niu ◽  
Shansuo Zheng ◽  
Hao Zheng ◽  
Yan Zhou ◽  
Pei Pei

2016 ◽  
Vol 32 (4) ◽  
pp. 2317-2335 ◽  
Author(s):  
Dante Navarrete-Macias ◽  
Jorge Varela-Rivera ◽  
Luis Fernandez-Baqueiro

This paper presents the results of a study on the out-of-plane seismic behavior of confined masonry walls. Five confined walls were tested under reverse cyclic loads. The variables studied were the axial stress and the wall aspect ratio. Analytical out-of-plane strength of walls was calculated considering the strengths of the wall panel and the concrete confining elements. The former was determined using the unidirectional strut method and the latter using a plastic analysis. It was observed that for walls with the same aspect ratio, as the axial stress increases, the out-of-plane strength increases. For walls with the same axial stress, as the aspect ratio increases, the strength decreases. Based on comparisons between analytical and experimental results, it was concluded that the models developed in this work predict accurately the out-of-plane strength of the walls.


2017 ◽  
Vol 747 ◽  
pp. 594-603 ◽  
Author(s):  
Hu Xu ◽  
Hao Wu ◽  
Cristina Gentilini ◽  
Qi Wang Su ◽  
Shi Chun Zhao

In this study, confined masonry specimens with regular arranged openings are tested in order to study the influence of different enhancements of the columns on seismic failure modes. In particular, five brick masonry walls and three half-scale two-storey masonry structures are tested under quasi-static loads. The experimental results show that increasing column ratio improves the seismic behavior of the wall specimens to some extent, but an excessive reinforcement ratio of the columns decreases the ductility. The global failure mode of the two-storey masonry structures is modified by inserting iron wires in the mortar bed joints, improving the structural collapse resistant capacity effectively.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Longxiao Chen ◽  
Kesheng Li ◽  
Guilei Song ◽  
Deng Zhang ◽  
Chuanxiao Liu

AbstractRock deterioration under freeze–thaw cycles is a concern for in-service tunnel in cold regions. Previous studies focused on the change of rock mechanical properties under unidirectional stress, but the natural rock mass is under three dimensional stresses. This paper investigates influences of the number of freeze–thaw cycle on sandstone under low confining pressure. Twelve sandstone samples were tested subjected to triaxial compression. Additionally, the damage characteristics of sandstone internal microstructure were obtained by using acoustic emission (AE) and mercury intrusion porosimetry. Results indicated that the mechanical properties of sandstone were significantly reduced by freeze–thaw effect. Sandstone’ peak strength and elastic modulus were 7.28–37.96% and 6.38–40.87% less than for the control, respectively. The proportion of super-large pore and large pore in sandstone increased by 19.53–81.19%. We attributed the reduced sandstone’ mechanical properties to the degenerated sandstone microstructure, which, in turn, was associated with increased sandstone macropores. The macroscopic failure pattern of sandstone changed from splitting failure to shear failure with an increasing of freeze–thaw cycles. Moreover, the activity of AE signal increased at each stage, and the cumulative ringing count also showed upward trend with the increase of freeze–thaw number.


Sign in / Sign up

Export Citation Format

Share Document