Recycling of bone china ceramic waste as cement replacement to produce sustainable self-compacting concrete

Structures ◽  
2022 ◽  
Vol 37 ◽  
pp. 364-378
Author(s):  
Lilesh Gautam ◽  
Jinendra Kumar Jain ◽  
Abhishek Jain ◽  
Pawan Kalla
2021 ◽  
Vol 9 (2) ◽  
pp. 71-78
Author(s):  
O. M. A. Daoud ◽  
O. S. Mahgoub

Self-compacting concrete (SCC) is an innovative construction material in the construction industry. It is a highly fluid and stable concrete that flows under its own weight and fills completely the formwork. The SCC requires high powder content (mainly of cement) up to 600kg/ to achieve its properties. This will be problematic because increasing the cement content is not feasible, and may cause high cost and some other technical problems such as higher heat of hydration and higher drying shrinkage. This paper investigates the effect of limestone powder (LSP) on fresh and hardened properties of SCC due to the use of LSP as a partial cement replacement. For comparison, a control sample of concrete was prepared without LSP to compare it with the various samples containing different percentages of LSP as a partial replacement of cement. Four mixes with a constant amount of (superplasticizer, sand, coarse aggregate, and water) at various replacement levels of 0%, 10%, 20% and 30% from the cement weight were prepared. The experimental results show that the LSP can be effectively used as a partial cement replacement on SCC to reduced cost and enhanced the performance of SCC in fresh and hardened stages.  


Fibers ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 36 ◽  
Author(s):  
Hisham Alabduljabbar ◽  
Rayed Alyousef ◽  
Fahed Alrshoudi ◽  
Abdulaziz Alaskar ◽  
Ahmed Fathi ◽  
...  

The behaviors of the fresh and mechanical properties of self-compacting concrete (SCC) are different from those of normal concrete mix. Previous research has investigated the benefits of this concrete mix by incorporating different constituent materials. The current research aims to develop a steel fiber reinforcement (SFR)‒SCC mixture and to study the effectiveness of different cement replacement materials (CRMs) on the fresh and mechanical properties of the SFR‒SCC mixtures. CRMs have been used to replace cement content, and the use of different water/cement ratios may lower the cost of CRMs, which include microwave-incinerated rice husk ash, silica fume, and fly ash. Fresh behavior, such as flow and filling ability and capacity segregation, was examined by a special test in SCC on the basis of their specifications. Moreover, compressive and splitting tensile strength tests were determined to simulate the hardened behavior for the concrete specimens. Experimental findings showed that, the V-funnel and L-box were within the accepted range for SCC. Tensile and flexural strength increases upon the use of 10% silica fume were found when compared with other groups; the ideal percentage of steel fiber that should be combined in this hybrid was 2% of the total weight of the binder. Overall, steel fibers generated a heightened compressive and splitting tensile strength in the self-compacting concrete mixes.


2020 ◽  
Vol 10 (22) ◽  
pp. 8058
Author(s):  
Samia Tariq ◽  
Allan N. Scott ◽  
James R. Mackechnie ◽  
Vineet Shah

The transport characteristics of waste glass powder incorporated self-compacting concrete (SCC) for a number of different durability indicators are reported in this paper. SCC mixes were cast at a water to binder ratio of 0.4 using glass powders with a mean particle size of 10, 20 and 40 µm and at cement replacement levels of 20, 30 and 40%. The oxygen permeability, electrical resistivity, porosity and chloride diffusivity were measured at different ages from 3 to 545 days of curing. The amount and particle size of the incorporated waste glass powder was found to influence the durability properties of SCC. The glass incorporated SCC mixes showed similar or better durability characteristics compared to general purpose (GP) and fly ash mixes at similar cement replacement level. A significant improvement in the transport properties of the glass SCC mixes was observed beyond 90 days.


2018 ◽  
Vol 7 (1) ◽  
pp. 20180043 ◽  
Author(s):  
Sama T. Aly ◽  
Amr S. El-Dieb ◽  
Mahmoud Reda Taha

2015 ◽  
Vol 754-755 ◽  
pp. 447-451 ◽  
Author(s):  
Sunarmasto ◽  
Stefanus Adi Kristiawan

Self-compacting concrete has been produced incorporating fly ash as cement replacement. The hardened properties of this concrete in term of compressive strength and porosity are investigated. The main goal of this investigation is to observe the effect of fly ash on those properties. The range of fly ash replacement level is 50%-70% by weight of the total binder. The compressive strength self-compacting concrete is reduced when fly ash replacement level is increased. The decrease in strength is more distinctive at 28 days of age compared to that of earlier or later age. Porosity as measured by vacuum saturation method tends to increase as fly ash replacement level is increased. A good correlation exists between porosity and compressive strength.


◽  
2016 ◽  
Author(s):  
Sama Ali ◽  
◽  
Amr EL-Dieb ◽  
Sherif Aboubakr ◽  
Mahmoud Reda Taha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document