Effect of Fly Ash on Compressive Strength and Porosity of Self-Compacting Concrete

2015 ◽  
Vol 754-755 ◽  
pp. 447-451 ◽  
Author(s):  
Sunarmasto ◽  
Stefanus Adi Kristiawan

Self-compacting concrete has been produced incorporating fly ash as cement replacement. The hardened properties of this concrete in term of compressive strength and porosity are investigated. The main goal of this investigation is to observe the effect of fly ash on those properties. The range of fly ash replacement level is 50%-70% by weight of the total binder. The compressive strength self-compacting concrete is reduced when fly ash replacement level is increased. The decrease in strength is more distinctive at 28 days of age compared to that of earlier or later age. Porosity as measured by vacuum saturation method tends to increase as fly ash replacement level is increased. A good correlation exists between porosity and compressive strength.

2019 ◽  
Vol 1 (2) ◽  
pp. 180-186
Author(s):  
Dilan Rantung ◽  
Steve W.M. Supit ◽  
Seska Nicolaas

This paper aims to investigate experimentally the influence of replacing cement with different fineness of fly ash based on flowability, passing ability, compressive strength, tensile strength (splitting). Concretes with 15% fly ash (passed a number 100 sieve) and fine fly ash (passed a number 200 sieve) as cement replacement were cast and tested at 7, 14, 28 days after water curing. A superplasticizer in the form of viscocrete 3115 N was constantly used for each concrete mixtures as much as 1% by weight of cement. The results show that the use of fly ash does not significantly increased the compressive strength and tensile strength of SCC mixtures. However, concrete with 15% fine fly ash its self and combined 7.5% fly ash with 7.5% fine fly ash show better flowability and passing ability when compared to concrete with cement only indicating the performance of using smaller particle sizes of fly ash could lead better properties of SCC that can be potentially used for building construction application.


2014 ◽  
Vol 567 ◽  
pp. 381-386 ◽  
Author(s):  
Nasir Shafiq ◽  
Muhd Fadhil Nuruddin ◽  
Ali Elheber Ahmed Elshekh ◽  
Ahmed Fathi Mohamed Salih

In order to improve the mechanical properties of high strength concrete, HSC, several studies have been conducted using fly ash, FA. Researchers have made it possible to achieve 100-150MPa high strength concrete. Despite the popularity of this FAHSC, there is a major shortcoming in that it becomes more brittle, resulting in less than 0.1% tensile strain. The main objective of this work was to evaluate the fresh and hardened properties of FAHSC utilizing chopped basalt fiber stands, CBFS, as an internal strengthening addition material. This was achieved through a series of experimental works using a 20% replacement of cement by FA together with various contents of CBFS. Test results of concrete mixes in the fresh state showed no segregation, homogeneousness during the mixing period and workability ranging from 60 to 110 mm. Early and long terms of compressive strength did not show any improvement by using CBFS; in fact, it decreased. This was partially substituted by the effect of FA. Whereas, the split and flexural strengths of FASHC were significantly improved with increasing the content of CBFS as well as the percentage of the split and flexural tensile strength to the compressive strength. Also, test results showed a progressive increase in the areas under the stress-strain curves of the FAHSC strains after the CBFS addition. Therefore, the brittleness and toughness of the FAHSC were enhanced and the pattern of failure moved from brittle failure to ductile collapse using CBFS. It can be considered that the CBFS is a suitable strengthening material to produce ductile FAHSC.


2018 ◽  
Vol 4 (4) ◽  
pp. 54
Author(s):  
Iis Nurjamilah ◽  
Abinhot Sihotang

ABSTRAKKajian karakteristik beton memadat sendiri yang menggunakan serat ijuk merupakan sebuah kajian yang dilakukan untuk mengetahui pengaruh penambahan serat ijuk terhadap karakteristik beton memadat sendiri (SCC). Beton memadat sendiri yang menggunakan serat ijuk (PFSCC) didesain memiliki campuran yang encer, bermutu tinggi (= 40 MPa) dan memiliki persentase kekuatan lentur yang lebih baik. PFSCC  didapatkan dari hasil pencampuran antara semen sebanyak 85%, fly ash 15%, superplastizicer 1,5%, serat ijuk 0%, 0,5%; 1%; 1,5%; 2% dan 3% dari berat binder (semen + fly ash), kadar air 190 kg/m3, agregat kasar 552,47 kg/m3 dan pasir 1.063 kg/m3. Semakin banyak persentase penambahan serat ijuk ke dalam campuran berdampak terhadap menurunnya workability beton segar. Penambahan serat ijuk yang paling baik adalah sebanyak 1%, penambahan tersebut dapat meningkatkan kekuatan tekan beton sebesar 13% dan lentur sebesar 1,8%.Kata kunci: beton memadat sendiri (SCC), beton berserat, beton memadat sendiri yang menggunakan serat ijuk (PFSCC), serat ijuk ABSTRACTThe study of characteristics self compacting concrete using palm fibers is a study conducted to determine the effect of adding palm fibers to characteristics of self compacting concrete (SCC). palm fibers self compacting concrete (PFSCC) is designed to have a dilute mixture, high strength (= 40 MPa), and have better precentage flexural strength. PFSCC was obtained from mixing of 85% cement, 15% fly ash, 1.5% superplastizicer, 0%, 0.5%, 1%, 1.5%, 2% and 3% palm fibers from the weight of binder  (cement + fly ash), water content 190 kg/m3, coarse aggregate 552.47 kg/m3 and sand 1,063 kg/m3. The more persentage palm fibers content added to the mixture makes workability of fresh concrete decreases. The best addition of palm fiber is 1%, this addition can increases the compressive strength 13% and flexural strength 1.8%.Keywords: self compacting concrete (SCC), fiber concrete, Palm fiber self compacting concrete (PFSCC), palm fiber


2019 ◽  
Vol 292 ◽  
pp. 108-113 ◽  
Author(s):  
Josef Fládr ◽  
Petr Bílý ◽  
Roman Chylík ◽  
Zdeněk Prošek

The paper describes an experimental program focused on the research of high performance concrete with partial replacement of cement by fly ash. Four mixtures were investigated: reference mixture and mixtures with 10 %, 20 % and 30 % cement weight replaced by fly ash. In the first stage, the effect of cement replacement was observed. The second phase aimed at the influence of homogenization process for the selected 30% replacement on concrete properties. The analysis of macroscopic properties followed compressive strength, elastic modulus and depth of penetration of water under pressure. Microscopic analysis concentrated on the study of elastic modulus, porosity and mineralogical composition of cement matrix using scanning electron microscopy, spectral analysis and nanoindentation. The macroscopic results showed that the replacement of cement by fly ash notably improved compressive strength of concrete and significantly decreased the depth of penetration of water under pressure, while the improvement rate increased with increasing cement replacement (strength improved by 18 %, depth of penetration by 95 % at 30% replacement). Static elastic modulus was practically unaffected. Microscopic investigation showed impact of fly ash on both structure and phase mechanical performance of the material.


2015 ◽  
Vol 802 ◽  
pp. 142-148
Author(s):  
M.N. Noor Azline ◽  
Farah Nora Aznieta Abd Aziz ◽  
Arafa Suleiman Juma

The article reports a laboratory experimental programme that investigated effect of ground granulated blast furnace (GGBS) on compressive strength of POFA ternary concrete. Compressive strength tests were performed at a range of cements combinations, including 100%PC, two POFA levels for binary concrete, 35% and 45%, and 15%GGBS inclusion for POFA ternary concrete. The compressive strength results were examined in comparison to PC only and equivalent POFA binary concretes for up to 28 days. Results show that the reduction in compressive strength is greater with the higher cement replacement level for all concretes particularly for POFA binary concretes. However, 15%GGBS in POFA blended concrete has a comparable compressive strength compared to PC concrete at both, 35% and 45%, cement replacement levels except for ternary concrete at 0.65 w/c. In addition, the compressive strength of ternary concrete is slightly higher compared to binary concrete for all concrete combinations. Although there is no significant noticeable influence on strength development, the presence of GGBS did not adverse the strength development of POFA blended concrete. Thus, it can be concluded that GGBS compensates the adverse effect of POFA at early strength development.


2020 ◽  
Vol 11 (1) ◽  
pp. 1
Author(s):  
Joseph Abah Apeh ◽  
Juliet Eyum Ameh

Self-compacting concrete (SCC) has great potentials as it offers several environmental, economic and technical benefits. Moreover, the use of fibers extends its possibilities since fibers arrest cracks and retard their propagation. Incorporation of Quarry Dust (QD) in SCC help to reduce environmental hazards during the production of QD. This study evaluated the fresh and hardened properties of steel fiber self-compacting concrete (SFSCC) incorporating QD. The optimum fiber and QD contents with no adverse effects on fresh and hardened properties were determined. A comparative study on behavior of SCC and SFSCC mixtures in terms of workability, compressive strength, compressive strength development ratio, tensile, flexural and energy absorption capacity was carried out. Test results showed that compressive strength increased with increase in QD contents at fixed fiber content by mass of Portland cement (PC) and then decreased. Strength development ratio (C28/C7) for SCC was 1.13, while it was 1.06, 1.08, 1.10 and 1.01 after reinforcing with 0.10, 0.20 and 0.30 contents of fiber. The compressive, tensile, flexural and energy absorption capacity or Toughness of SFSCC increased with the inclusion of the aforementioned contents of steel fiber up to 0.20 % volume of total binder at constant QD content and then decreased when compared with control SCC values. From these results, optimum value for the variables studied was obtained from mix QD20 + 0.2fr. Hence, steel fiber and QD could be successfully used in SCC production not minding the slight draw back on workability of SCC caused by inclusion of steel fiber, but with a modified dosage of super-plasticizer (SP), fresh and hardened properties, in accordance with specifications in relevant code(s) can be achieved.


2016 ◽  
Vol 866 ◽  
pp. 3-8 ◽  
Author(s):  
Osama Ahmed Mohamed ◽  
Waddah Al Hawat

Fly ash is a sustainable partial replacement of Portland cement that offers significant advantages in terms of fresh and hardened properties of concrete. This paper presents the findings of a study that aims at assessing the durability and strength properties of sustainable self-consolidating concrete (SCC) mixes in which Portland cement was partially replaced with 10%, 20%, 30%, and 40% fly ash. The study confirms that replacing Portland cement with fly ash at all of the percentages studied improves resistance of concrete to chloride penetration. The 40% fly ash mix exhibited the highest resistance to chloride penetration compared to the control mix. Despite the relative drop in compressive strength after 7 days of curing, the 28-day compressive strength of 40% SCC mix reached 55.75 MP, which is very close to the control mix. The study also confirms that adding 1%, 1.5%, and 2% basalt fibers, respectively, to the 40% fly ash mix improves the resistance to chloride penetration compared to the mix without basalt fibers.


2015 ◽  
Vol 754-755 ◽  
pp. 468-472 ◽  
Author(s):  
Chao Lung Hwang ◽  
Trong Phuoc Huynh

This work investigates the possibility of using fly ash (FA) and Vietnam residual rice husk ash (RHA) in producing unfired building bricks with applying densified mixture design algorithm (DMDA) method. In this research, little amount of cement was added into the mixtures as binder substitution. Unground rice husk ash (URHA), an agricultural by-product, was used as partial fine aggregate replacement (10% and 30%) in the mixtures. The solid bricks of 220×105×60 mm in size were prepared in this study. The hardened properties of the bricks were investigated including compressive strength, flexural strength and water absorption according to corresponding Vietnamese standards. Forming pressure of 35 MPa was applied to form the solid bricks in the mold. The test results show that all brick specimens obtained good mechanical properties, which were well conformed to Vietnamese standard. Compressive strength and flexural strength of the bricks were respectively in range of 13.81–22.06 MPa and 2.25–3.47 MPa. It was definitely proved many potential applications of FA and RHA in the production of unfired building bricks.


Sign in / Sign up

Export Citation Format

Share Document