scholarly journals Pyrolysis of waste polystyrene into transportation fuel: Effect of contamination on oil yield and production at pilot scale

Author(s):  
Salomie van der Westhuizen ◽  
François–Xavier Collard ◽  
Johann Görgens
1984 ◽  
Vol 24 (01) ◽  
pp. 75-86 ◽  
Author(s):  
R.L. Braun ◽  
J.C. Diaz ◽  
A.E. Lewis

Abstract Lawrence Livermore Natl. Laboratory (LLNL) has developed a one-dimensional (1D) mathematical model to simulate modified in-situ (MIS) retorting of oil shale. In this paper we discuss application of the model to commercial-scale retorting conditions. The model was tested by comparing calculated values to those measured in experimental retort runs performed at LLNL. There was generally good agreement between the calculated and observed results for oil yield, temperature profiles, and the yields of most gas species. Retorting rates were generally overestimated by as much as 10%. The model is a useful tool for design and control of retort operations and to identify and interpret observations that differ from model predictions. The model was used to predict the results for MIS retorting on a commercial scale, focusing on larger retorts and larger shale particle sizes, focusing on larger retorts and larger shale particle sizes than could be investigated experimentally. Retort bed properties, particularly shale composition and particle size, play an important role in determining the recoverable fraction of oil. For a given shale composition, the inlet-gas properties can be selected to help control retort operations and to maximize oil yield. Extreme variations in oil shale grade that may be encountered as a function of depth can be dealt with by appropriate changes in the composition and flow rate of the inlet gas. In addition, we show that substituting oxygen diluted with steam or CO2 (for air or air diluted with steam) can make significant improvements in the heating value of the effluent gas. Finally, we demonstrate the feasibility of retorting through a substantial interval of very low-grade shale. Introduction LLNL has been developing technology applicable to the MIS process of extracting oil from oil shale.1,2 Our program has involved the experimental measurement of chemical reactions and reaction kinetics,3 the operation of pilot-scale retorts,4 and the development of a mathematical model of an MIS retort.5 The objective is to help establish the technical base required to evaluate and apply the MIS method on a commercial scale. A keystone of our program is the retort model, since it represents our cumulative knowledge of the chemical and physical processes involved in oil shale retorting. The retort model has been used in planning and interpreting pilot-scale retort experiments and has successfully predicted most of the results of those experiments.4 It has also been used in developing an operating strategy for a field MIS oil shale retorting experiment.6 The principal purpose of this work is to apply the retort model to a wide range of conditions for MIS retorting, focusing on larger retorts and larger shale particle sizes than can be investigated in a laboratory experiment. Before the results of those calculations are presented, the model is discussed in terms of its content and validity. Model Description The LLNL retort model is a transient, 1D treatment of a packed-bed retort. In developing the model, we adopted a mechanistic approach based on fundamental chemical and physical properties rather than empirical scaling of pilot retort experiments. The model contains no arbitrarily adjustable parameters. A complete mathematical description of the model has been given elsewhere.5 The important features, therefore, are reviewed here only briefly. Our model includes those processes believed to have the most important effects in either the hot-gas retorting mode or the forward combustion mode. The physical processes are axial convective transport of heat and mass, axial thermal dispersion, gas/solid heat transfer, intraparticle shale thermal conductivity, water vaporization and condensation, and wall heat loss. The chemical reactions within the shale particles are the release of bound water, pyrolysis of kerogen, coking of oil, pyrolysis of char, decomposition of carbonate materials, and gasification of residual organic carbon with CO2, H2O, and O2. The chemical reactions in the bulk-gas stream are the combustion and cracking of oil vapor, combustion of H2, CH4, CHx, and CO, and the water/gas shift. The model permits axial variations of initial shale composition, particle-size distribution, and bed void fraction. It also permits time-dependent variations of the composition, flow rate, and temperature of inlet gas. The governing equations for mass and energy balance are solved numerically by a semi-implicit, finite-difference method. The results of these calculations determine the oil yield, and the composition and temperature of both the gas stream and the shale particles as a function of time and location in the retort.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2379
Author(s):  
Irene Mediavilla ◽  
María Amparo Blázquez ◽  
Alex Ruiz ◽  
Luis Saúl Esteban

Cistus ladanifer is a Mediterranean native plant from which valuable products, such as essential oil, are obtained. Manual harvesting of the plants in wild shrublands is usual during short periods of time. Their mechanised harvesting could increase the volume of harvested plants and prevent fires, further storage of the plants collected being necessary. The objective of this work is to study the influence of the storage period of mechanically harvested bales on the essential oil yield and qualitative composition. The harvesting trials were carried out with an adapted commercial harvester baler and the storage of the bales was performed indoors during 1–7 days, 15–30 days and 100–120 days. Afterwards, the bales were crushed (30 mm) and distilled in a 30 litre stainless steel still with saturated steam (0.5 bar). The essential oil components were identified by GC-MS and quantified by GC-FID. The storage of mechanically harvested Cistus ladanifer does not decrease the oil yield of steam distillation on a pilot scale. However, it leads to differences in the quantitative composition of the essential oils, decreasing the total monoterpene compounds content and increasing that of oxygenated sesquiterpenes, especially when the biomass is stored for 100–120 days, without affecting its qualitative composition.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (8) ◽  
Author(s):  
JANI LEHMONEN ◽  
TIMO RANTANEN ◽  
KARITA KINNUNEN-RAUDASKOSKI

The need for production cost savings and changes in the global paper and board industry during recent years have been constants. Changes in the global paper and board industry during past years have increased the need for more cost-efficient processes and production technologies. It is known that in paper and board production, foam typically leads to problems in the process rather than improvements in production efficiency. Foam forming technology, where foam is used as a carrier phase and a flowing medium, exploits the properties of dispersive foam. In this study, the possibility of applying foam forming technology to paper applications was investigated using a pilot scale paper forming environment modified for foam forming from conventional water forming. According to the results, the shape of jet-to-wire ratios was the same in both forming methods, but in the case of foam forming, the achieved scale of jet-to-wire ratio and MD/CD-ratio were wider and not behaving sensitively to shear changes in the forming section as a water forming process would. This kind of behavior would be beneficial when upscaling foam technology to the production scale. The dryness results after the forming section indicated the improvement in dewatering, especially when foam density was at the lowest level (i.e., air content was at the highest level). In addition, the dryness results after the pressing section indicated a faster increase in the dryness level as a function of foam density, with all density levels compared to the corresponding water formed sheets. According to the study, the bonding level of water- and foam-laid structures were at the same level when the highest wet pressing value was applied. The results of the study show that the strength loss often associated with foam forming can be compensated for successfully through wet pressing.


TAPPI Journal ◽  
2009 ◽  
Vol 8 (3) ◽  
pp. 14-20 ◽  
Author(s):  
YUAN-SHING PERNG ◽  
EUGENE I-CHEN WANG ◽  
SHIH-TSUNG YU ◽  
AN-YI CHANG

Trends toward closure of white water recirculation loops in papermaking often lead to a need for system modifications. We conducted a pilot-scale study using pulsed electrocoagulation technology to treat the effluent of an old corrugated containerboard (OCC)-based paper mill in order to evaluate its treatment performance. The operating variables were a current density of 0–240 A/m2, a hydraulic retention time (HRT) of 8–16 min, and a coagulant (anionic polyacrylamide) dosage of 0–22 mg/L. Water quality indicators investigated were electrical con-ductivity, suspended solids (SS), chemical oxygen demand (COD), and true color. The results were encouraging. Under the operating conditions without coagulant addition, the highest removals for conductivity, SS, COD, and true color were 39.8%, 85.7%, 70.5%, and 97.1%, respectively (with an HRT of 16 min). The use of a coagulant enhanced the removal of both conductivity and COD. With an optimal dosage of 20 mg/L and a shortened HRT of 10 min, the highest removal achieved for the four water quality indicators were 37.7%, 88.7%, 74.2%, and 91.7%, respectively. The water qualities thus attained should be adequate to allow reuse of a substantial portion of the treated effluent as process water makeup in papermaking.


TAPPI Journal ◽  
2010 ◽  
Vol 9 (6) ◽  
pp. 24-30 ◽  
Author(s):  
NIKLAS BERGLIN ◽  
PER TOMANI ◽  
HASSAN SALMAN ◽  
SOLVIE HERSTAD SVÄRD ◽  
LARS-ERIK ÅMAND

Processes have been developed to produce a solid biofuel with high energy density and low ash content from kraft lignin precipitated from black liquor. Pilot-scale tests of the lignin biofuel were carried out with a 150 kW powder burner and a 12 MW circulating fluidized bed (CFB) boiler. Lignin powder could be fired in a powder burner with good combustion performance after some trimming of the air flows to reduce swirl. Lignin dried to 10% moisture content was easy to feed smoothly and had less bridging tendencies in the feeding system than did wood/bark powder. In the CFB boiler, lignin was easily handled and cofired together with bark. Although the filter cake was broken into smaller pieces and fines, the combustion was not disturbed. When cofiring lignin with bark, the sulfur emission increased compared with bark firing only, but most of the sulfur was captured by calcium in the bark ash. Conventional sulfur capture also occurred with addition of limestone to the bed. The sulfur content in the lignin had a significantly positive effect on reducing the alkali chloride content in the deposits, thus reducing the high temperature corrosion risk.


Author(s):  
E. Harbers ◽  
D. van der Plas ◽  
A. Richardson ◽  
K. Subramanian
Keyword(s):  

2014 ◽  
Vol 4 (02) ◽  
Author(s):  
Rina S. Soetopo ◽  
Sri Purwati ◽  
Henggar Hardiani ◽  
Mukharomah Nur Aini ◽  
Krisna Adhitya Wardhana

A continuous pilot scale study has been conducted to investigate the effectiveness of anaerobic digestion of biological sludge. The sludge has a total solid content of 0.53% - 1.1%, pH of 7.20 to 7.32. Its organic content is about 97 %, The research were conducted in two stages, which are acidification (performed in 3 m3 the Continously Stirred Tank Reactor/CSTR at pH of 5.5 to 6.0) and methanation (performed in 5 m3 the Up Flow Anaerobic Sludge Blanket/UASB reactor at pH 6.5 to 7.0). The retention time (RT) was gradually shortened from 6 days to 1 day for acidification and from 8 days to 2 days for methanation. The results showed that operating the CSTR at the RT of 1 day and the organic loading of 8.23 g Volatile Solid (VS)/m3.day could produce Volatile Fatty Acid (VFA) at an average value of 17.3 g/kg VS.day. Operating the UASB reactor at the RT of 2 days and the organic loading (Chemical Oxygen Demand/COD) of 2.4 kg COD/m3.day could produce biogas at an average value of 66.3 L/day, with an average methane content of 69.9%, methane rate of 0.17 L CH4/g COD reduction or 19.06 L CH4/kg VS. Furthermore, methanation could reduce COD at an average value of 51.2 %, resulting in the effluent average value of COD filtrate and COD total of 210.1 mg/L and 375.2 mg /L, respectively.Keywords: acidification, methanation, CSTR, UASB, biogas ABSTRAKPercobaan digestasi anaerobik lumpur IPAL biologi industri kertas secara kontinyu skala pilot telah dilakukan di industri kertas dengan tujuan mengkaji efektivitas proses digestasi anaerobik dalam mengolah lumpur tersebut. Lumpur yang digunakan memiliki total solids sekitar 0,53% – 1,1%, pH netral (7,20 – 7,32) dengan komponen utama senyawa organik sekitar 97%. Percobaan dilakukan dalam dua tahap yaitu asidifikasi dalam reaktor CSTR berkapasitas 3 m3 pada pH 5,5 – 6,0 dan metanasi dalam reaktor UASB berkapasitas 5 m3 pada pH 6,5 – 7,0. Percobaan dilakukan dengan waktu retensi yang dipersingkat secara bertahap dari 6 hari ke 1 hari untuk proses asidifikasi dan dari 8 hari ke 2 hari untuk proses metanasi. Hasil percobaan menunjukkan bahwa pengoperasian reaktor CSTR dengan waktu retensi 1 hari dan beban organik 8,3 g VS/m3.hari dapat menghasilkan VFA rata-rata 17,3 g/kg VS.hari dengan kisaran 8,36 – 30,59 g/kg VS.hari, sedangkan pengoperasian reaktor UASB pada waktu retensi 2 hari dan beban organik 2,4 kg COD/m3.hari dapat menghasilkan biogas rata-rata 66,3 L/hari dengan kadar metana rata-rata 69,9% atau 0,17 L CH4/g COD reduksi atau 19,06 L CH4/kg VS. Selain itu proses metanasi dapat menurunkan COD terlarut rata-rata 51,2%, dengan konsentrasi efluen COD terlarut  rata-rata 210,1 mg/L dan COD total rata-rata 375,2 mg/L.Kata kunci: asidifikasi, metanasi, CSTR, UASB, biogas


Sign in / Sign up

Export Citation Format

Share Document