The impact of depressive disorders and treatment with an antidepressant on the activity of P-glycoprotein at the blood-brain barrier

2010 ◽  
Vol 122 ◽  
pp. S39-S40
Author(s):  
O.L. de Klerk⁎ ◽  
A.T.M. Willemsen ◽  
F.J. Bosker ◽  
P. Meerlo ◽  
R.A. Dierckx ◽  
...  
2010 ◽  
Vol 39 (1) ◽  
pp. 8-14 ◽  
Author(s):  
Hiroshi Sugimoto ◽  
Hideki Hirabayashi ◽  
Yoshiaki Kimura ◽  
Atsutoshi Furuta ◽  
Nobuyuki Amano ◽  
...  

2017 ◽  
Vol 106 (9) ◽  
pp. 2625-2631 ◽  
Author(s):  
Stephanie A. Newman ◽  
Yijun Pan ◽  
Jennifer L. Short ◽  
Joseph A. Nicolazzo

2014 ◽  
Vol 58 (8) ◽  
pp. 4464-4469 ◽  
Author(s):  
Ji-Qin Wu ◽  
Kun Shao ◽  
Xuan Wang ◽  
Rui-Ying Wang ◽  
Ya-Hui Cao ◽  
...  

ABSTRACTAmphotericin B (AMB) has been a mainstay therapy for fungal infections of the central nervous system, but its use has been limited by its poor penetration into the brain, the mechanism of which remains unclear. In this study, we aimed to investigate the role of P-glycoprotein (P-gp) in AMB crossing the blood-brain barrier (BBB). The uptake of AMB by primary brain capillary endothelial cellsin vitrowas significantly enhanced after inhibition of P-gp by verapamil. The impact of two model P-gp inhibitors, verapamil and itraconazole, on brain/plasma ratios of AMB was examined in both uninfected CD-1 mice and those intracerebrally infected withCryptococcus neoformans. In uninfected mice, the brain/plasma ratios of AMB were increased 15 min (3.5 versus 2.0;P< 0.05) and 30 min (5.2 versus 2.8;P< 0.05) after administration of verapamil or 45 min (6.0 versus 3.9;P< 0.05) and 60 min (5.4 versus 3.8;P< 0.05) after itraconazole administration. The increases in brain/plasma ratios were also observed in infected mice treated with AMB and P-gp inhibitors. The brain tissue fungal CFU in infected mice were significantly lower in AMB-plus-itraconazole or verapamil groups than in the untreated group (P< 0.005), but none of the treatments protected the mice from succumbing to the infection. In conclusion, we demonstrated that P-gp inhibitors can enhance the uptake of AMB through the BBB, suggesting that AMB is a P-gp substrate.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 892
Author(s):  
Elisa L. J. Moya ◽  
Elodie Vandenhaute ◽  
Eleonora Rizzi ◽  
Marie-Christine Boucau ◽  
Johan Hachani ◽  
...  

Central nervous system (CNS) diseases are one of the top causes of death worldwide. As there is a difficulty of drug penetration into the brain due to the blood–brain barrier (BBB), many CNS drugs treatments fail in clinical trials. Hence, there is a need to develop effective CNS drugs following strategies for delivery to the brain by better selecting them as early as possible during the drug discovery process. The use of in vitro BBB models has proved useful to evaluate the impact of drugs/compounds toxicity, BBB permeation rates and molecular transport mechanisms within the brain cells in academic research and early-stage drug discovery. However, these studies that require biological material (animal brain or human cells) are time-consuming and involve costly amounts of materials and plastic wastes due to the format of the models. Hence, to adapt to the high yields needed in early-stage drug discoveries for compound screenings, a patented well-established human in vitro BBB model was miniaturized and automated into a 96-well format. This replicate met all the BBB model reliability criteria to get predictive results, allowing a significant reduction in biological materials, waste and a higher screening capacity for being extensively used during early-stage drug discovery studies.


2021 ◽  
Vol 22 (3) ◽  
pp. 1068
Author(s):  
Katarzyna Dominika Kania ◽  
Waldemar Wagner ◽  
Łukasz Pułaski

Two immortalized brain microvascular endothelial cell lines (hCMEC/D3 and RBE4, of human and rat origin, respectively) were applied as an in vitro model of cellular elements of the blood–brain barrier in a nanotoxicological study. We evaluated the impact of CdSe/ZnS core-shell-type quantum dot nanoparticles on cellular homeostasis, using gold nanoparticles as a largely bioorthogonal control. While the investigated nanoparticles had surprisingly negligible acute cytotoxicity in the evaluated models, a multi-faceted study of barrier-related phenotypes and cell condition revealed a complex pattern of homeostasis disruption. Interestingly, some features of the paracellular barrier phenotype (transendothelial electrical resistance, tight junction protein gene expression) were improved by exposure to nanoparticles in a potential hormetic mechanism. However, mitochondrial potential and antioxidant defences largely collapsed under these conditions, paralleled by a strong pro-apoptotic shift in a significant proportion of cells (evidenced by apoptotic protein gene expression, chromosomal DNA fragmentation, and membrane phosphatidylserine exposure). Taken together, our results suggest a reactive oxygen species-mediated cellular mechanism of blood–brain barrier damage by quantum dots, which may be toxicologically significant in the face of increasing human exposure to this type of nanoparticles, both intended (in medical applications) and more often unintended (from consumer goods-derived environmental pollution).


Sign in / Sign up

Export Citation Format

Share Document