Synthesis and electrochemical properties of Li-rich spinel type LiMn2O4 powders by spray pyrolysis using aqueous solution of manganese carbonate

2010 ◽  
Vol 506 (2) ◽  
pp. 883-887 ◽  
Author(s):  
Shoji Hirose ◽  
Takayuki Kodera ◽  
Takashi Ogihara
2011 ◽  
Vol 485 ◽  
pp. 111-114 ◽  
Author(s):  
Shoji Hirose ◽  
Takayuki Kodera ◽  
Takashi Ogihara

Al doped LiMn2O4 powders were prepared by spray pyrolysis using the aqueous solution of manganese carbonate. The aqueous solution, in which manganese carbonate was uniformly dispersed by a surfactant, was used as the starting solution. Al2O3 nanopowders, Al(OH)3 and Al(NO3)3·9H2O were used as the doping agent of Al. A scanning electron microscope photograph showed that Al doped LiMn2O4 powders had spherical morphology with broad particle size distribution. X-ray diffraction revealed that crystal phase of all samples were good agreement with spinel phase. The rechargeable capacity of Al doped LiMn2O4 cathode was about 110 mAh/g at 1 C regardless of doping agent. 75% of initial discharge capacity was maintained after 100 cycles


2015 ◽  
Vol 1775 ◽  
pp. 7-12 ◽  
Author(s):  
Anara Molkenova ◽  
Izumi Taniguchi

ABSTRACTSpray pyrolysis has been widely used to prepare homogeneous and uniform ceramic powders with high purity. In this study, we are proposing ultrasonic spray pyrolysis followed by heat treatment to produce SiOx/C composite powders, where sucrose was used as a carbon source. Furthermore, high energy ball milling of the as-prepared powders in the presence of acetylene black was conducted to activate its electrochemical properties by reducing the particle size and improving the functionalization of the SiOx composite particles. SiOx/C nanocomposite finally obtained at a sucrous concentration of 0.1 mol L-1 showed superior electrochemical properties, and the SiOx/C nanocomposite electrode delivered the first discharge and charge capacities of 1252 and 819 mAh g-1, respectively, with an initial columbic efficiency of 65% at a current density of 50 mAh g-1 in the potential range from 0.01 to 3 V versus Li/Li+.


1999 ◽  
Vol 14 (7) ◽  
pp. 3059-3065 ◽  
Author(s):  
S. Stopić ◽  
J. Nedeljković ◽  
Z. Rakočević ◽  
D. Uskoković

Ideal spherical nonagglomerated Ni particles (mean diameter 0.62–1.12 μm) were prepared by ultrasonic spray pyrolysis of NiCl2 aqueous solution in the presence of 0.1 mass% of Pd, Cu, or Ni in an H2–N2 atmosphere at 900 °C. Incomplete reduction of the NiCl2 aqueous solution in the absence of additives was observed under the same conditions. Differential thermal and thermal-gravimetric analyses revealed a decrease in initial reduction temperature of NiCl2 from 375 to 275 °C by the addition of Pd, Cu, or Ni. The morphology of Ni particles was analyzed using scanning tunneling microscopy. The surface roughness of Ni particles was found to be controllable by addition of appropriate additives.


Sign in / Sign up

Export Citation Format

Share Document