Glassy state formation and magnetic properties of Co-rich ternary RE–Co–B (RE=Y, Tb, Ho) amorphous alloys

2014 ◽  
Vol 584 ◽  
pp. 477-482 ◽  
Author(s):  
Zbigniew Śniadecki ◽  
Jozef Marcin ◽  
Ivan Škorvánek ◽  
Natalia Pierunek ◽  
Bogdan Idzikowski
Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1730
Author(s):  
Qiang Wang ◽  
Ding Ding ◽  
Lei Xia

In this paper, binary Nd-Co alloys with compositional range from Nd72.5Co27.5 to Nd50Co50 were successfully vitrified into glassy state by a melt-spinning method. The glass formability of the metallic glasses (MGs) was studied and the best glass former in the binary Nd-Co alloys was obtained. Magnetic properties of the MGs were measured. The compositional dependence of Curie temperature of the MGs was observed. The mechanism for the spin-glass-like behaviors and high coercivity at low temperature, and their influence on the magnetic entropy change of the MGs, were investigated.


Author(s):  
A.R. Pelton ◽  
A.F. Marshall ◽  
Y.S. Lee

Amorphous materials are of current interest due to their desirable mechanical, electrical and magnetic properties. Furthermore, crystallizing amorphous alloys provides an avenue for discerning sequential and competitive phases thus allowing access to otherwise inaccessible crystalline structures. Previous studies have shown the benefits of using AEM to determine crystal structures and compositions of partially crystallized alloys. The present paper will discuss the AEM characterization of crystallized Cu-Ti and Ni-Ti amorphous films.Cu60Ti40: The amorphous alloy Cu60Ti40, when continuously heated, forms a simple intermediate, macrocrystalline phase which then transforms to the ordered, equilibrium Cu3Ti2 phase. However, contrary to what one would expect from kinetic considerations, isothermal annealing below the isochronal crystallization temperature results in direct nucleation and growth of Cu3Ti2 from the amorphous matrix.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 5
Author(s):  
Lukasz Hawelek ◽  
Tymon Warski ◽  
Patryk Wlodarczyk ◽  
Marcin Polak ◽  
Przemyslaw Zackiewicz ◽  
...  

The complex structural and magnetic studies of the annealed rapidly quenched Cu-free Fe72Ni8Nb4Si2B14 alloy (metallic ribbons form) are reported here. Based on the calorimetric results, the conventional heat treatment process (with heating rate 10 °C/min and subsequent isothermal annealing for 20 min) for wound toroidal cores has been optimized to obtain the least lossy magnetic properties (for the minimum value of coercivity and magnetic core losses at 50 Hz). For optimal conditions, the complex permeability in the 104–108 Hz frequency range together with core power losses obtained from magnetic induction dependence up to the frequency of 400 kHz was successfully measured. The average and local crystal structure was investigated by the use of the X-ray diffraction method and the transmission electron microscopy observations and proved its fully glassy state. Additionally, for the three temperature values, i.e., 310, 340 and 370 °C, the glass relaxation process study in the function of annealing time was carried out to obtain a deeper insight into the soft magnetic properties: magnetic permeability and cut-off frequency. For this type of Cu-free soft magnetic materials, the control of glass relaxation process (time and temperature) is extremely important to obtain proper magnetic properties.


1978 ◽  
Vol 68 (5-6) ◽  
pp. 461-462 ◽  
Author(s):  
M.R.J. Gibbs ◽  
J.P. Patterson ◽  
J.E. Evetts ◽  
D.R.H. Jones

2002 ◽  
Vol 91 (6) ◽  
pp. 3764-3768 ◽  
Author(s):  
G. Kumar ◽  
J. Eckert ◽  
S. Roth ◽  
W. Löser ◽  
S. Ram ◽  
...  

1994 ◽  
Vol 75 (10) ◽  
pp. 6940-6942 ◽  
Author(s):  
P. Quintana ◽  
E. Amano ◽  
R. Valenzuela ◽  
J. T. S. Irvine

2007 ◽  
Vol 130 ◽  
pp. 171-174 ◽  
Author(s):  
Z. Stokłosa ◽  
G. Badura ◽  
P. Kwapuliński ◽  
Józef Rasek ◽  
G. Haneczok ◽  
...  

The crystallization and optimization of magnetic properties effects in FeXSiB (X=Cu, V, Co, Zr, Nb) amorphous alloys were studied by applying X-ray diffraction methods, high resolution transmission electron microscopy (HRTEM), resistometric and magnetic measurements. The temperatures of the first and the second stage of crystallization, the 1h optimization annealing temperature and the Curie temperature were determined for different amorphous alloys. Activation energies of crystallization process were obtained by applying the Kissinger method. The influence of alloy additions on optimization effect and crystallization processes was carefully examined.


Sign in / Sign up

Export Citation Format

Share Document