Effect of the high current pulsed electron beam treatment on the surface microstructure and corrosion resistance of a Mg-4Sm alloy

2018 ◽  
Vol 741 ◽  
pp. 65-75 ◽  
Author(s):  
Y.R. Liu ◽  
K.M. Zhang ◽  
J.X. Zou ◽  
D.K. Liu ◽  
T.C. Zhang
Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 707
Author(s):  
Yue Sun ◽  
Bo Gao ◽  
Liang Hu ◽  
Kui Li ◽  
Ying Zhang

In this paper, the effect of rare earth Ce on the corrosion resistance of Al-20SiC composites treated with high-current pulsed electron beams is investigated, and the corresponding corrosion mechanism is proposed. The scanning electron microscope (SEM) results show that cracks arise on the surface of Al-20SiC composites prepared by pressureless sintering. After electron beam treatment, the pores on the surface are reduced because of the filling of Al liquid. After adding CeO2 to Al-20SiC composites, the wettability between Al and SiC phases is improved, thus realizing metallurgical bonding of the two phases, and microcracks generated after HCPEB treatment are significantly eliminated. Glancing X-ray diffraction (GIXRD) results show that after electron beam treatment, aluminum grains tend to grow more favorably with the stable and dense crystal plane of Al(111), thus improving corrosion resistance. The electrochemical test results show that the corrosion current density decreases by one order of magnitude with increase in the number of pulses because of rare earth Ce compared to the initial Al-20SiC composite specimens, indicating that the corrosion resistance of the Al-20SiC-0.3CeO2 composite is improved. This is because rare earth not only eliminates microcracks, but also changes the type of corrosion from localized to uniform, thus improving corrosion resistance. The Al-based composite material modified by electron beam and rare earth has many potential applications and development prospects.


2010 ◽  
Vol 654-656 ◽  
pp. 1700-1703 ◽  
Author(s):  
Thierry Grosdidier ◽  
Xiang Dong Zhang ◽  
Jiang Wu ◽  
Nathalie Allain-Bonasso ◽  
Ke Min Zhang ◽  
...  

High current pulsed electron beam (HCPEB) is a fairly new technique for improving surface properties such as corrosion and wear resistances. One of the negative effects induced by HCPEB is the potential formation of craters on the surface of the HCPEB treated materials. These changes can impair the corrosion-resistance by promoting pitting. The mechanisms of nucleation and growth are detailed and the effect of the number of pulses on crater formation is discussed.


Sign in / Sign up

Export Citation Format

Share Document