Pressureless die attach by transient liquid phase sintering of Cu nanoparticles and Sn-58Bi particles assisted by polyvinylpyrrolidone dispersant

2019 ◽  
Vol 781 ◽  
pp. 657-663 ◽  
Author(s):  
Kwang-Ho Jung ◽  
Kyung Deuk Min ◽  
Choong-Jae Lee ◽  
Seung-Boo Jung
2009 ◽  
Vol 6 (1) ◽  
pp. 66-74 ◽  
Author(s):  
Pedro O. Quintero ◽  
F. Patrick McCluskey

The demand for electronics capable of operating at temperatures above the traditional 125°C limit continues to increase. Devices based on wide band gap semiconductors have been demonstrated to operate at temperatures up to 500°C, but packaging remains a major hurdle to product development. Recent regulations, such as RoHS and WEEE, increase the complexity of the packaging task as they prohibit the use of certain materials in electronic products such as lead (Pb), which has traditionally been used in high temperature solder die attach. In this investigation, an Ag-In solder paste is presented as a die attach alternative for high temperature applications. The proposed material has been processed by a transient liquid phase sintering method resulting in an in situ alloying of its main constituents. A shift of the melting point of the system, confirmed by differential scanning calorimetry, provided the basis for a breakthrough in the typical processing temperature rule. The mechanical integrity and reliability of this novel attachment material is discussed.


2016 ◽  
Vol 55 (4S) ◽  
pp. 04EC14 ◽  
Author(s):  
Masahisa Fujino ◽  
Hirozumi Narusawa ◽  
Yuzuru Kuramochi ◽  
Eiji Higurashi ◽  
Tadatomo Suga ◽  
...  

2015 ◽  
Vol 2015 (1) ◽  
pp. 000449-000452 ◽  
Author(s):  
Xiangdong Liu ◽  
Hiroshi Nishikawa

We develop a transient liquid phase sinter (TLPS) bonding using Sn-coated Cu micro-sized particles. With this bonding process, a thermally stable joint comprising Cu3Sn phase and a dispersion of ductile Cu particles can be obtained. The particle paste, which contained Cu particles with a thin Sn coating and terpineol, was used to join Cu substrates. The setup was bonded at 300 °C for 30s under an applied pressure of 10 MPa using a thermo-compression bonding system under a formic acid gas atmosphere for reducing the oxide layer on the Sn coating and the Cu substrate. After bonding, the TLPS joint showed a thermally stable microstructure with a good shear strength, which was fully consisted of Cu3Sn intermetallic compounds matrix and embedded ductile Cu particles. The kinetics of the microstructure transformation and high temperature reliability of the TLPS joint were investigated. After 300 °C isothermal aging for 200h, the shear strength and microstructure of the TLPS joints showed almost unchanged. The results demonstrate that joint with high-melting-point obtained by the TLPS bonding using Sn-coated Cu particle paste has the potential to fulfill the requirement of high temperature electronic packaging.


2014 ◽  
Vol 11 (1) ◽  
pp. 7-15
Author(s):  
Hannes Greve ◽  
F. Patrick McCluskey

Low temperature transient liquid phase sintering (LT-TLPS) can be used to form high-temperature joints between metallic interfaces at low process temperatures. In this paper, process analyses and shear strength studies of paste-based approaches to LT-TLPS are presented. The process progression studies include DSC analyses and observations of intermetallic compound (IMC) formation by cross-sectioning. It was found that the sintering process reaches completion after sintering times of 15 min for process temperatures approximately 50°C above the melting point of the low temperature constituent. For the shear studies, test samples consisting of copper dice and copper substrates joined by sintering with a variety of sinter pastes with different ratios of copper and tin have been assessed. A fixture was designed for high temperature enabled shear tests at 25°C, 125°C, 250°C, 400°C, and 600°C. The influence of the ratio of the amount of high melting-point constituent to the amount of low melting-point constituent on the maximum application temperature of the sinter paste was analyzed. Ag20Sn and Cu50Sn pastes showed no reduction in shear strength up to 400°C, and Cu40Sn pastes showed high shear strengths up to 600°C. It was shown that LT-TLPS can be used to form high temperature stable joints at low temperatures without the need to apply pressure during processing.


Sign in / Sign up

Export Citation Format

Share Document