In situ anion exchange strategy to construct flower-like BiOCl/BiOCOOH p-n heterojunctions for efficiently photocatalytic removal of aqueous toxic pollutants under solar irradiation

2019 ◽  
Vol 781 ◽  
pp. 582-588 ◽  
Author(s):  
Shijie Li ◽  
Jialin Chen ◽  
Yanping Liu ◽  
Kaibing Xu ◽  
Jianshe Liu
2018 ◽  
Vol 9 ◽  
pp. 2297-2305 ◽  
Author(s):  
Shijie Li ◽  
Wei Jiang ◽  
Shiwei Hu ◽  
Yu Liu ◽  
Yanping Liu ◽  
...  

Developing highly active and durable visible-light-driven photocatalysts for the degradation of toxic pollutants is of vital significance. Herein, Ag2CO3 nanoparticles were in situ formed on Bi2MoO6 microflowers to produce Ag2CO3/Bi2MoO6 heterostructures via a facile procedure. The morphologies, phases, chemical compositions, and optical properties of Ag2CO3/Bi2MoO6 were examined by multiple characterization techniques. The Ag2CO3/Bi2MoO6 heterostructures exhibited substantially improved performance in the removal of industrial dyes (rhodamine B (RhB), methyl orange (MO), and methyl blue (MB)), and the antibiotic tetracycline hydrochloride (TC), compared with bare Bi2MoO6 and Ag2CO3 under visible-light irradiation. The enhancement of activity was attributed to the high charge-separation capacity, which results from the matched band alignment of the two components. The cycling experiments showed a good durability of Ag2CO3/Bi2MoO6. Holes were found to be the dominant active species accounting for the pollutant degradation. This compound is a promising candidate for wastewater treatment.


2021 ◽  
Author(s):  
Xiao-Ya Zhai ◽  
Yifan Zhao ◽  
Guo-Ying Zhang ◽  
Bing-Yu Wang ◽  
Qi-Yun Mao

In the work, a direct Z-scheme AgBr/α-Ag2WO4 heterojunction was prepared by in-situ anion exchange at room temperature. The construction strategy is energy- and time-saving for large scale synthesis. The α-Ag2WO4...


2017 ◽  
Vol 5 (8) ◽  
pp. 4003-4010 ◽  
Author(s):  
Jiangju Si ◽  
Haining Wang ◽  
Shanfu Lu ◽  
Xin Xu ◽  
Sikan Peng ◽  
...  

By modulating the amphiphilic architectures, 3D well-connected nano-channels are constructed and a trade-off between conductivity and stability in AEMs is achieved.


Solar Energy ◽  
2015 ◽  
Vol 120 ◽  
pp. 603-619 ◽  
Author(s):  
Benjamin Pillot ◽  
Marc Muselli ◽  
Philippe Poggi ◽  
João Batista Dias

1989 ◽  
Vol 44 (10) ◽  
pp. 877-882 ◽  
Author(s):  
H. Fechtig

Abstract Properties of cometary dust particles are better known since the space missions to Comet Halley. Their properties (densities, atomic composition) are compared with relevant observations from lunar microcraters and in-situ experiments. At 1 AU in the eliptic, 2/3 of the dust grains are normal density particles, presumably of asteroidal origin and irregularly shaped, while the remaining 1/3 are low density particles, presumably of cometary origin, but due to solar irradiation in a processed state (corresponding to “Brownlee”-particles). Beyond the asteroidal belt only black cometary dust grains are observed which have recently been released from comet nuclei orbiting on highly eccentric trajectories.


Toxics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 330
Author(s):  
Vitória L. Louros ◽  
Liliana M. Ferreira ◽  
Valentina G. Silva ◽  
Carla Patrícia Silva ◽  
Manuel A. Martins ◽  
...  

In this work, carbon dots (CD) were synthesized and coupled to titanium dioxide (TiO2) to improve the photodegradation of antibiotics in aquaculture effluents under solar irradiation. Oxolinic acid (OXA) and sulfadiazine (SDZ), which are widely used in aquaculture, were used as target antibiotics. To prepare nanocomposites of CD containing TiO2, two modes were used: in-situ (CD@TiO2) and ex-situ (CD/TiO2). For CD synthesis, citric acid and glycerol were used, while for TiO2 synthesis, titanium butoxide was the precursor. In ultrapure water (UW), CD@TiO2 and CD/TiO2 showed the largest photocatalytic effect for SDZ and OXA, respectively. Compared with their absence, the presence of CD@TiO2 increased the photodegradation of SDZ from 23 to 97% (after 4 h irradiation), whereas CD/TiO2 increased the OXA photodegradation from 22 to 59% (after 1 h irradiation). Meanwhile, in synthetic sea salts (SSS, 30‰, simulating marine aquaculture effluents), CD@TiO2 allowed for the reduction of SDZ’s half-life time (t1/2) from 14.5 ± 0.7 h (in absence of photocatalyst) to 0.38 ± 0.04 h. Concerning OXA in SSS, the t1/2 remained the same either in the absence of a photocatalyst or in the presence of CD/TiO2 (3.5 ± 0.3 h and 3.9 ± 0.4 h, respectively). Overall, this study provided novel perspectives on the use of eco-friendly CD-TiO2 nanocomposites for the removal of antibiotics from aquaculture effluents using solar radiation.


Author(s):  
Bao Yu Xia ◽  
Ya Yan ◽  
Xianying Wang ◽  
Yuan Kong ◽  
Jiangwei Zhang ◽  
...  

Anion exchange membrane water electrolysis (AEMWE) with non-precious catalysts offers a promising route for industrial hydrogen production. However, the sluggish kinetics of anodic water oxidation hinder its efficiency and cost....


Sign in / Sign up

Export Citation Format

Share Document