Multiplex compounds of Ni, Cu, Co-based oxyphosphide nanowire arrays grown on Ni foam: A well-designed free-standing anode for high-capacity lithium storage

2019 ◽  
Vol 799 ◽  
pp. 406-414 ◽  
Author(s):  
Xiaoyu Wu ◽  
Songmei Li ◽  
Jianhua Liu ◽  
Mei Yu
2018 ◽  
Vol 11 (04) ◽  
pp. 1850068 ◽  
Author(s):  
Changlei Niu

Aluminium has shown its superiority in stabilization of the monoclinic VO2(B) in free-standing nanobelts. In this paper, aluminium-doped VO2(B) nanobelts are successfully fabricated by a facile one-step hydrothermal method and used as cathode for lithium-ion battery. XPS results show that Al-doping promotes the formation of high valence state of vanadium in VO2(B) nanobelts. Due to the accommodation of valence state of vanadium and lattice volume, Al-doped VO2(B) nanobelts used as the cathode material for lithium-ion batteries exhibit better lithium storage properties with high capacity of 172[Formula: see text]mAh[Formula: see text]g[Formula: see text] and cycling stability than undoped VO2(B) nanobelts. This work demonstrates that the doping of aluminium can significantly enhance the electrochemical performance of VO2(B), suggesting that appropriate cationic doping is an efficient path to improve the electrochemical performance of electrode materials.


2021 ◽  
pp. 2003612
Author(s):  
Peijie Wu ◽  
Xiaoming Xu ◽  
Yi Wu ◽  
Feng Xu ◽  
Xuanpeng Wang ◽  
...  

2021 ◽  
pp. 2101712
Author(s):  
Yingying Zhang ◽  
Peng Chen ◽  
Qingyu Wang ◽  
Qian Wang ◽  
Kai Zhu ◽  
...  

Author(s):  
Fangfang Xue ◽  
Yangyang Li ◽  
Chen Liu ◽  
Zhigang Zhang ◽  
Jun Lin ◽  
...  

Constructing suitable electrode materials with high capacity and excellent mechanical property is indispensable for flexible lithium-ion batteries (LIBs) to satisfy the growing flexible and wearable electronic devices. Herein, a necklace-like...


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Die Su ◽  
Yi Pei ◽  
Li Liu ◽  
Zhixiao Liu ◽  
Junfang Liu ◽  
...  

AbstractWearable and portable mobile phones play a critical role in the market, and one of the key technologies is the flexible electrode with high specific capacity and excellent mechanical flexibility. Herein, a wire-in-wire TiO2/C nanofibers (TiO2 ww/CN) film is synthesized via electrospinning with selenium as a structural inducer. The interconnected carbon network and unique wire-in-wire nanostructure cannot only improve electronic conductivity and induce effective charge transports, but also bring a superior mechanic flexibility. Ultimately, TiO2 ww/CN film shows outstanding electrochemical performance as free-standing electrodes in Li/K ion batteries. It shows a discharge capacity as high as 303 mAh g−1 at 5 A g−1 after 6000 cycles in Li half-cells, and the unique structure is well-reserved after long-term cycling. Moreover, even TiO2 has a large diffusion barrier of K+, TiO2 ww/CN film demonstrates excellent performance (259 mAh g−1 at 0.05 A g−1 after 1000 cycles) in K half-cells owing to extraordinary pseudocapacitive contribution. The Li/K full cells consisted of TiO2 ww/CN film anode and LiFePO4/Perylene-3,4,9,10-tetracarboxylic dianhydride cathode possess outstanding cycling stability and demonstrate practical application from lighting at least 19 LEDs. It is, therefore, expected that this material will find broad applications in portable and wearable Li/K-ion batteries.


RSC Advances ◽  
2016 ◽  
Vol 6 (29) ◽  
pp. 24366-24372 ◽  
Author(s):  
Fengqi Lu ◽  
Qiang Chen ◽  
Yibin Wang ◽  
Yonghao Wu ◽  
Pengcheng Wei ◽  
...  

The free-standing CC@TiOxNy@SnS2 nanocomposites have been synthesized via two steps hydrothermal process and exhibited excellent lithium storage performance.


2012 ◽  
Vol 258 (19) ◽  
pp. 7781-7786 ◽  
Author(s):  
Leszek Zaraska ◽  
Grzegorz D. Sulka ◽  
Marian Jaskuła

2021 ◽  
Author(s):  
yajun JI ◽  
Fei Chen ◽  
Shufen Tan ◽  
Fuyong Ren

Abstract Transition metal oxides are generally designed as hybrid nanostructures with high performance for supercapacitors by enjoying the advantages of various electroactive materials. In this paper, a convenient and efficient route had been proposed to prepare hierarchical coral-like MnCo2O4.5@Co-Ni LDH composites on Ni foam, in which MnCo2O4.5 nanowires were enlaced with ultrathin Co-Ni layered double hydroxides nanosheets to achieve high capacity electrodes for supercapacitors. Due to the synergistic effect of shell Co-Ni LDH and core MnCo2O4.5, the outstanding electrochemical performance in three-electrode configuration was triggered (high area capacitance of 5.08 F/cm2 at 3 mA/cm2 and excellent rate capability of maintaining 61.69 % at 20 mA/cm2), which is superior to those of MnCo2O4.5, Co-Ni LDH and other metal oxides based composites reported. Meanwhile, the as-prepared hierarchical MnCo2O4.5@Co-Ni LDH electrode delivered improved electrical conductivity than that of pristine MnCo2O4.5. Furthermore, the as-constructed asymmetric supercapacitor using MnCo2O4.5@Co-Ni LDH as positive and activated carbon as negative electrode presented a rather high energy density of 220 μWh/cm2 at 2400 μW/cm2 and extraordinary cycling durability with the 100.0 % capacitance retention over 8000 cycles at 20 mA/cm2, demonstrating the best electrochemical performance compared to other asymmetric supercapacitors using metal oxides based composites as positive electrode material. It can be expected that the obtained MnCo2O4.5@Co-Ni LDH could be used as the high performance and cost-effective electrode in supercapacitors.


Sign in / Sign up

Export Citation Format

Share Document