Al-doped VO2(B) nanobelts as cathode material with enhanced electrochemical properties for lithium-ion batteries

2018 ◽  
Vol 11 (04) ◽  
pp. 1850068 ◽  
Author(s):  
Changlei Niu

Aluminium has shown its superiority in stabilization of the monoclinic VO2(B) in free-standing nanobelts. In this paper, aluminium-doped VO2(B) nanobelts are successfully fabricated by a facile one-step hydrothermal method and used as cathode for lithium-ion battery. XPS results show that Al-doping promotes the formation of high valence state of vanadium in VO2(B) nanobelts. Due to the accommodation of valence state of vanadium and lattice volume, Al-doped VO2(B) nanobelts used as the cathode material for lithium-ion batteries exhibit better lithium storage properties with high capacity of 172[Formula: see text]mAh[Formula: see text]g[Formula: see text] and cycling stability than undoped VO2(B) nanobelts. This work demonstrates that the doping of aluminium can significantly enhance the electrochemical performance of VO2(B), suggesting that appropriate cationic doping is an efficient path to improve the electrochemical performance of electrode materials.

Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2053
Author(s):  
Oyunbayar Nyamaa ◽  
Duck-Hyeon Seo ◽  
Jun-Seok Lee ◽  
Hyo-Min Jeong ◽  
Sun-Chul Huh ◽  
...  

Recently, applications for lithium-ion batteries (LIBs) have expanded to include electric vehicles and electric energy storage systems, extending beyond power sources for portable electronic devices. The power sources of these flexible electronic devices require the creation of thin, light, and flexible power supply devices such as flexile electrolytes/insulators, electrode materials, current collectors, and batteries that play an important role in packaging. Demand will require the progress of modern electrode materials with high capacity, rate capability, cycle stability, electrical conductivity, and mechanical flexibility for the time to come. The integration of high electrical conductivity and flexible buckypaper (oxidized Multi-walled carbon nanotubes (MWCNTs) film) and high theoretical capacity silicon materials are effective for obtaining superior high-energy-density and flexible electrode materials. Therefore, this study focuses on improving the high-capacity, capability-cycling stability of the thin-film Si buckypaper free-standing electrodes for lightweight and flexible energy-supply devices. First, buckypaper (oxidized MWCNTs) was prepared by assembling a free stand-alone electrode, and electrical conductivity tests confirmed that the buckypaper has sufficient electrical conductivity (10−4(S m−1) in LIBs) to operate simultaneously with a current collector. Subsequently, silicon was deposited on the buckypaper via magnetron sputtering. Next, the thin-film Si buckypaper freestanding electrodes were heat-treated at 600 °C in a vacuum, which improved their electrochemical performance significantly. Electrochemical results demonstrated that the electrode capacity can be increased by 27/26 and 95/93 μAh in unheated and heated buckypaper current collectors, respectively. The measured discharge/charge capacities of the USi_HBP electrode were 108/106 μAh after 100 cycles, corresponding to a Coulombic efficiency of 98.1%, whereas the HSi_HBP electrode indicated a discharge/charge capacity of 193/192 μAh at the 100th cycle, corresponding to a capacity retention of 99.5%. In particular, the HSi_HBP electrode can decrease the capacity by less than 1.5% compared with the value of the first cycle after 100 cycles, demonstrating excellent electrochemical stability.


2021 ◽  
Author(s):  
K. Kalaiselvi ◽  
S. Premlatha ◽  
M. Raju ◽  
Paruthimal Kalaignan Guruvaiah

Abstract LiNi1/3Mn1/3Co1/3O2 as a promising cathode material for lithium-ion batteries was synthesized by a sol-gel method using nitrate precursor calcined at 800°C for 10 hours. The crystallite nature of samples is confirmed from X-ray diffraction analysis. SEM and TEM analyses were used to investigate the surface morphology of the prepared samples. It was found that, highly crystalline polyhedral RuO2 nanoparticles are well doped on the surface of pristine LiNi1/3Mn1/3Co1/3O2 with a size of about approximately 200 nm. The chemical composition of the prepared samples was characterized by EDX and XPS analyses. The electrochemical performance of the proposed material was studied by cyclic voltammetry and charge/discharge analyses. The electrode kinetics of the samples was studied by electrochemical impedance spectroscopy. The developed RuO2 doping may provide an effective strategy to design and synthesize the advanced electrode materials for lithium ion batteries. The doping strategy has dramatically increased the capacity retention from 74 % to 90% with a high discharge capacity of 251.2 mAhg− 1. 3 % RuO2-doped LiNi1/3Mn1/3Co1/3O2 cathode materials have showed the similar characteristics of two potential plateaus obtained at 2.8 and 4.2 V compared with un doped electrode cathode material. These results revealed the enhanced performance of RuO2- doped LiNi1/3Mn1/3Co1/3O2 during insertion and extraction of lithium ions compared to pristine material.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1730 ◽  
Author(s):  
Ha Tran Huu ◽  
Xuan Dieu Nguyen Thi ◽  
Kim Nguyen Van ◽  
Sung Jin Kim ◽  
Vien Vo

The demand for well-designed nanostructured composites with enhanced electrochemical performance for lithium-ion batteries electrode materials has been emerging. In order to improve the electrochemical performance of MoS2-based anode materials, MoS2 nanosheets integrated with g-C3N4 (MoS2/g-C3N4 composite) was synthesized by a facile heating treatment from the precursors of thiourea and sodium molybdate at 550 °C under N2 gas flow. The structure and composition of MoS2/g-C3N4 were confirmed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, infrared spectroscopy, X-ray photoelectron spectroscopy, thermogravimetric analysis and elemental analysis. The lithium storage capability of the MoS2/g-C3N4 composite was evaluated, indicating high capacity and stable cycling performance at 1 C (A·g−1) with a reversible capacity of 1204 mA·h·g−1 for 200 cycles. This result is believed the role of g-C3N4 as a supporting material to accommodate the volume change and improve charge transport for nanostructured MoS2. Additionally, the contribution of the pseudocapacitive effect was also calculated to further clarify the enhancement in Li-ion storage performance of the composite.


Author(s):  
Fangfang Xue ◽  
Yangyang Li ◽  
Chen Liu ◽  
Zhigang Zhang ◽  
Jun Lin ◽  
...  

Constructing suitable electrode materials with high capacity and excellent mechanical property is indispensable for flexible lithium-ion batteries (LIBs) to satisfy the growing flexible and wearable electronic devices. Herein, a necklace-like...


2021 ◽  
Vol 10 (1) ◽  
pp. 210-220
Author(s):  
Fangfang Wang ◽  
Ruoyu Hong ◽  
Xuesong Lu ◽  
Huiyong Liu ◽  
Yuan Zhu ◽  
...  

Abstract The high-nickel cathode material of LiNi0.8Co0.15Al0.05O2 (LNCA) has a prospective application for lithium-ion batteries due to the high capacity and low cost. However, the side reaction between the electrolyte and the electrode seriously affects the cycling stability of lithium-ion batteries. In this work, Ni2+ preoxidation and the optimization of calcination temperature were carried out to reduce the cation mixing of LNCA, and solid-phase Al-doping improved the uniformity of element distribution and the orderliness of the layered structure. In addition, the surface of LNCA was homogeneously modified with ZnO coating by a facile wet-chemical route. Compared to the pristine LNCA, the optimized ZnO-coated LNCA showed excellent electrochemical performance with the first discharge-specific capacity of 187.5 mA h g−1, and the capacity retention of 91.3% at 0.2C after 100 cycles. The experiment demonstrated that the improved electrochemical performance of ZnO-coated LNCA is assigned to the surface coating of ZnO which protects LNCA from being corroded by the electrolyte during cycling.


2016 ◽  
Vol 4 (47) ◽  
pp. 18223-18239 ◽  
Author(s):  
Miriam Keppeler ◽  
Nan Shen ◽  
Shubha Nageswaran ◽  
Madhavi Srinivasan

Review of the research progress in α-Fe2O3/carbon nanocomposites with superior electrochemical performance as promising alternatives to graphite anodes in LIBs.


2017 ◽  
Vol 41 (21) ◽  
pp. 12901-12909 ◽  
Author(s):  
Chunfeng Shao ◽  
Ziqiang Wang ◽  
Errui Wang ◽  
Shujun Qiu ◽  
Hailiang Chu ◽  
...  

Guanine was, for the first time, used as a nitrogen source during the synthesis of nitrogen-doped porous carbons (NMCs) with enhanced electrochemical performance.


RSC Advances ◽  
2016 ◽  
Vol 6 (29) ◽  
pp. 24366-24372 ◽  
Author(s):  
Fengqi Lu ◽  
Qiang Chen ◽  
Yibin Wang ◽  
Yonghao Wu ◽  
Pengcheng Wei ◽  
...  

The free-standing CC@TiOxNy@SnS2 nanocomposites have been synthesized via two steps hydrothermal process and exhibited excellent lithium storage performance.


Sign in / Sign up

Export Citation Format

Share Document