Microstructure evolution and deformation behavior of Au–20Sn eutectic alloy during hot rolling process

2020 ◽  
Vol 831 ◽  
pp. 154824 ◽  
Author(s):  
Junjie He ◽  
Danli Zhu ◽  
Chao Deng ◽  
Kai Xiong ◽  
Jiyang Xie ◽  
...  
2013 ◽  
Vol 652-654 ◽  
pp. 2024-2028
Author(s):  
Wen Ping Liu ◽  
B. Zhang ◽  
Pei Qi Wang ◽  
Qin He Zhang

To improve the product properties of H-beams, it is essential to understand the effects of hot rolling parameters on the microstructure evolution of the beams. For this purpose, a thermo mechanical model was built with the finite element Package ABAQUS. By re-meshing the model, multipass large-deformation hot rolling process was simulated under the boundary conditions predefined in accordance with the practical production. Based on the hot rolling simulation, an impact analysis of strain rate, initial rough rolling temperature, and time interval between passes on the microstructure evolution of H-beam austenite was conducted. The analytical results are meaningful for optimizing hot rolling parameters and improving H-beam properties.


2020 ◽  
Vol 989 ◽  
pp. 699-704
Author(s):  
Nikita S. Deryabin ◽  
Sergey M. Chernyshev ◽  
Sergey N. Veselkov

Under the current conditions, the consumption of special purpose alloys or steels is growing. This is due to the development of the import substitution program. It should be noted, that such materials possess specific deformation behavior, which requires providing particular conditions of a hot rolling process. One of the characteristics of the deformation behavior is the narrow thermal plastic range. Therefore, it is necessary to conduct a hot rolling in several stages, which include interchange of heating and rolling processes. For the purpose to resolve the issue, the experience of the multilayer hot rolling of plates has been investigated where all advantages of this way of a hot rolling process were used. Based on the method of the multilayer hot rolling, the pack rolling has been developed which gives the possibility of production of hot-rolled plates from special purpose alloys or steels.


2016 ◽  
Vol 846 ◽  
pp. 145-150
Author(s):  
Yang An ◽  
Peter Hodgson ◽  
Chun Hui Yang

To determine the relations between rolling passes, mechanical behaviours and microstructure evolution of AA7050 aluminum alloys, finite element modeling of a multipass hot rolling process is developed and employed to investigate thermo-mechanical evolution during this processing. Through parametric studies, the distribution of local strain and temperature across thickness during the hot rolling process are numerically determined. These results are used to determine the subgrain size and thus the microstructure evolution during the hot rolling process are estimated.


2011 ◽  
Vol 291-294 ◽  
pp. 449-454 ◽  
Author(s):  
Fuan Hua ◽  
Chao Yi Zhang ◽  
Qiang Li ◽  
Bao Yi Yu ◽  
Wei Hua Liu ◽  
...  

In order to optimize rolling process of AM50 Mg alloy, numerical simulation method is adopted to find reasonable process parameters. And then, the metallograph was viewed to find the microstructure evolution during hot rolling process. Through numerical simulation it is found that while the heating temperature is 420 and the train less than 0.33 each time. Through 10 times rolling, a 10mm thickness plate was rolled to 0.5mm, and its grain size also decreases to 10μm, which indicates that AM50 Mg alloy can be formed by hot rolling method.


2011 ◽  
Vol 50 (7) ◽  
pp. 1951-1957 ◽  
Author(s):  
Sen-dong Gu ◽  
Li-wen Zhang ◽  
Chong-xiang Yue ◽  
Jin-hua Ruan ◽  
Jian-lin Zhang ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2947
Author(s):  
Xian Lin ◽  
Xinyi Zou ◽  
Dong An ◽  
Bruce W. Krakauer ◽  
Mingfang Zhu

In this work, a 6-pass hot-rolling process followed by air cooling is studied by means of a coupled multi-scale simulation approach. The finite element method (FEM) is utilized to obtain macroscale thermomechanical parameters including temperature and strain rate. The microstructure evolution during the recrystallization and austenite (γ) to ferrite (α) transformation is simulated by a mesoscale cellular automaton (CA) model. The solute drag effect is included in the CA model to take into account the influence of manganese on the γ/α interface migration. The driving force for α-phase nucleation and growth also involves the contribution of the deformation stored energy inherited from hot-rolling. The simulation renders a clear visualization of the evolving grain structure during a multi-pass hot-rolling process. The variations of the nonuniform, deformation-stored energy field and carbon concentration field are also reproduced. A detailed analysis demonstrates how the parameters, including strain rate, grain size, temperature, and inter-pass time, influence the different mechanisms of recrystallization. Grain refinement induced by recrystallization and the γα phase transformation is also quantified. The simulated final α-fraction and the average α-grain size agree reasonably well with the experimental microstructure.


2018 ◽  
Vol 34 (11) ◽  
pp. 2069-2083 ◽  
Author(s):  
Weitao Jia ◽  
Qichi Le ◽  
Yan Tang ◽  
Yunpeng Ding ◽  
Fangkun Ning ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document