rough rolling
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 4)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Vol 410 ◽  
pp. 330-335
Author(s):  
Petr O. Bykov ◽  
Maral Zh. Tussupbekova ◽  
Dinara R. Absolyamova

The paper investigates the technology of production of steel billets continuously cast billets for rolling balls of large diameter. In Kazakhstan, in connection with the development of new copper deposits such as Aktogay and Bozshakol, the need for large diameter steel grinding balls for primary ore processing has increased. The main problem in the operation of large diameter grinding balls is the tendency of the grinding media to break during operation. The authors of the work investigated the process of production of steel billets continuously cast billets with a cross section of 150 × 150 mm for rolling balls of large diameter (d 125 mm) in the PB LLP "KSP Steel", which showed that the breaking of grinding balls is initiated mainly by the presence of internal discontinuities (gas axial looseness) in continuously cast billets. Studies have shown that the technological scheme for the production of grinding balls with a diameter of 125 mm from continuously cast billets with a section of 150 × 150 mm, including steel smelting in an arc furnace with steel finishing on a ladle-furnace unit, deoxidation with aluminum and degassing in a ladle vacuum apparatus, casting steel in a closed jet on a continuous casting and further production of rolled stock on a rough rolling mill ensures the absence of internal discontinuities (gas bubbles, axial looseness) in the workpieces and ensures the production of high quality balls.


Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 413
Author(s):  
Rami A. Almatani ◽  
Anthony J. DeArdo

In the 61 years that niobium has been used in commercial steels, it has proven to be beneficial via several properties, such as strength and toughness. Over this time, numerous studies have been performed and papers published showing that both the strength and toughness can be improved with higher Nb additions. Earlier studies have verified this trend for steels containing up to about 0.04 wt.% Nb. Basic studies have shown that the addition of Nb increases the recrystallization-stop temperature, T5% or Tnr. These same studies have shown that with up to about 0.05 wt.% of Nb, the T5% temperature increases in the range of finish rolling, which is the basis of controlled rolling. These studies also have shown that at very high Nb levels, exceeding approximately 0.06 wt.% Nb, the recrystallization-stop temperature or T5% can increase into the temperature range of rough rolling, and this could result in insufficient grain refinement and recrystallization during rough rolling. However, the question remains as to how much Nb can be added before the detriments outweigh the benefits. While the benefits are easily observed and discussed, the detriments are not. These detriments at high Nb levels include cost, undissolved Nb particles, weldability issues, higher mill loads and roll wear and the lessening of grain refinement that might otherwise occur during plate rough rolling. This loss of grain refinement is important, since coarse grained microstructures often result in failure in the drop weight tear testing of the plate and pipe. The purpose of this paper is to discuss the practical limits of Nb microalloying in controlled rolled low carbon linepipe steels of gauges ranging from 12 to 25 mm in thickness.


2019 ◽  
Vol 25 (4) ◽  
pp. 1072-1082
Author(s):  
Yong-feng Chen ◽  
Jian-bo Xie ◽  
Yan-xin Wu ◽  
Jian-xun Fu

2018 ◽  
Vol 941 ◽  
pp. 717-722
Author(s):  
Samuel F. Rodrigues ◽  
Fulvio Siciliano ◽  
Clodualdo Aranas Jr. ◽  
Gedeon S. Reis ◽  
Brian J. Allen ◽  
...  

When austenite is deformed within the austenite phase field, it partially transforms dynamically into ferrite. Here, plate rolling simulations were carried out on an X70 steel using rough rolling passes of 0.4 strain each. The influence of the number of roughing passes on the grain size and volume fraction of induced ferrite was determined. Up to three roughing passes applied at 1100 °C followed by 5 finishing passes at 900 °C were employed. The sample microstructures were analysed by means of metallographic techniques. Both the critical strain to the onset of dynamic transformation as well as the grain size decreased with pass number during the roughing simulations. For the finishing passes, the mean flow stresses (MFS`s) applicable to each schedule decreased when a higher number of roughing passes was applied. The volume fraction of dynamically formed ferrite retained after simulated rolling increased with the roughing pass number. This is ascribed to the increased amount of ferrite retransformed into austenite and the finer grain sizes produced during roughing. The forward transformation is considered to occur displacively while the retransformation into austenite during holding takes place by a diffusional mechanism. This indicates that both dynamic transformation (DT) and dynamic recrystallization were taking place during straining.


Author(s):  
Shibo Wen ◽  
Shaowei Xue ◽  
Chaoyu Han ◽  
Binbin Liu ◽  
Yongfeng Liang ◽  
...  

Cylindrical Fe-6.5wt.% Si bars with 7.5 mm in diameter were successfully fabricated from as cast ingot through three rolling stages within 10 passes: rough rolling at 850–900 °C and 8–10 m/min, medium rolling at 800–850 °C and 10–15 m/min, and finish rolling at 800–850 °C and 12–18 m/min. The evolution of microstructure, texture and ordered structure, and the mechanical property are investigated. The results showed that the grains were refined by the hot bar rolling. Area fractions of the {100}<011> oriented grains and the {011}<100> oriented grains decreased to 0 during the hot bar rolling. Whereas, the {100}<001> component, the {011}<211> component and the {112}<110> component increased, and γ fiber with {111}<110> component was dominant. DO3 ordered phase were suppressed, and B2 ordered domains were refined after the hot bar rolling. Ductility of the as rolled bar was higher than that of the rotary swaged bar, due to the absence of the DO3 ordered phase and the fine grains in the rolled bar. Hence, the hot bar rolling technology is an excellent process to fabricate the Fe-6.5wt.% Si bars.


Author(s):  
Jing-Guo Ding ◽  
Qi-Yao Li ◽  
Geng-Sheng Ma ◽  
Wen Peng

In this paper, in order to obtain the solution for using a handful of casting billets to produce a variety of specifications of products, a compulsory broadsiding method of continuous rough rolling process is used with four horizontal mills and two vertical mills. Due to nonplane deformation in grooves, partition method is used for the rolled piece, which is divided into five zones along the width direction. Mathematical model with five zones are proposed and the final width of plate are obtained by superposition method. In order to obtain the width spread coefficients of each zone as well as parameters optimizing, a numerical simulation method is used to calculate the rolling parameters of compulsory broadsiding of continuous rough rolling process. Computation result from mathematical model indicates that the exit width reaches its maximum value when the angle of chamfer reaches nearly 50°, and the trend of width increasing becomes slow when friction coefficient is larger than 0.4. Practical application shows that the present analytical model can be used to calculate the parameters in compulsory broadsiding rough rolling process easily and quickly, the maximum of width spread can reach 87 mm, and the deviation of the measured width could be controlled to be less than ±3 mm.


Sign in / Sign up

Export Citation Format

Share Document