Study on deformation behavior in supercooled liquid region of a Ti-based metallic glassy matrix composite by artificial neural network

2020 ◽  
Vol 844 ◽  
pp. 155761
Author(s):  
Y.S. Wang ◽  
R.K. Linghu ◽  
W. Zhang ◽  
Y.C. Shao ◽  
A.D. Lan ◽  
...  
2007 ◽  
Vol 22 (7) ◽  
pp. 1849-1858 ◽  
Author(s):  
Kwang Seok Lee ◽  
Jürgen Eckert ◽  
Hyun-Joon Jun ◽  
Young Won Chang

The influence of annealing on the structural changes and the mechanical properties of Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit-1) bulk metallic glass was systematically studied by varying the annealing times at 703 K. The evolution of the structural state at a relatively high temperature within the supercooled liquid region was studied by thermal analysis, x-ray diffraction, high-resolution transmission electron microscopy, extended x-ray absorption fine structure, and dilatometric measurements. The deformation behavior and the mechanical properties were also examined by carrying out hardness and compression tests for the specimens annealed for various times.


2011 ◽  
Vol 391-392 ◽  
pp. 778-782
Author(s):  
Gang Li ◽  
Zhan Zhe Zhang

In this paper, we report a Fe-based nanocrystalline-amorphous matrix composite synthesised via partially crystallising an amorphous alloy. The microstructure of the composite was characterize. An amorphous rod of 2mm in diameter was initially prepared via injecting the melted Fe36Co36B20Si4Nb4 alloy into a copper mould in vacuum, which was confirmed to be completely amorphous by X-ray difraction(XRD). Differential scanning calorimeteric(DSC)curve shown that the span △Tx of the supercooled liquid region and the reduced glass transition temperature(Tg/Tm)for the amorphous alloy are 40 K and 0.615, respectively. The composite composed of nanocrystalline particles homogeneously dispersed in an amorphous matrix was prepared by isothermal annealing. In this course, the amorphous Fe-based sample was held for different time at different temperature. The types of the nanocrystalline phases obtained in different annealing conditions were characterised by XRD and selected-area diffraction pattern(SAED).The crystallization behavior of the amorphous Fe-based alloy was discussed.


2008 ◽  
Vol 23 (3) ◽  
pp. 745-754 ◽  
Author(s):  
Y.Y. Li ◽  
C. Yang ◽  
W.P. Chen ◽  
X.Q. Li

Amorphous Ti66Nb13Cu8Ni6.8Al6.2 alloy powders with different tungsten carbide (WC) contents were synthesized by mechanical alloying. Outstanding differences in particle size, thermal stability, glass-forming ability, and phase evolution are found for the synthesized Ti-based glassy powders with different WC contents. This is attributed to the fact that the WC was partially alloyed into the glassy matrix and the matrix element Ti was also partially alloyed into the WC particles. The obtained glassy powders exhibit a wide supercooled liquid region above 64 K. Meanwhile, the main crystalline phase is the ductile β-Ti with a high volume fraction in the crystallized alloy powders. These two aspects offer the possibility of easily preparing a plasticity-enhanced bulk composite in the supercooled liquid region by powder metallurgy, which couples the nanosized WC particles with in situ precipitated ductile β-Ti phase.


Sign in / Sign up

Export Citation Format

Share Document