Effect of tungsten micro-scale dispersed particles on the microstructure and mechanical properties of Ti–6Al–4V alloy

2021 ◽  
Vol 851 ◽  
pp. 156847
Author(s):  
Le Wang ◽  
Qunbo Fan ◽  
Xinjie Zhu ◽  
Duoduo Wang ◽  
Kai Chen ◽  
...  
2012 ◽  
Vol 602-604 ◽  
pp. 602-607
Author(s):  
Ping Wang ◽  
Fu Yin Han ◽  
Yong Sheng Wang ◽  
Lu Geng ◽  
Shao Feng Meng ◽  
...  

The microstructure and mechanical properties of AZ61-4Si magnesium alloy before and after equal channel angular processing (ECAP) were studied. Results show that the matrix α-Mg and divorced eutectic β-Mg17Al12are refined and chinese script type Mg2Si phases are broken to dispersed particles after ECAP. The mechanical properties of the alloy after ECAP are significantly improved. After 4 passes of ECAP, the yield strength is increased from 50MPa to 109 MPa, tensile strength from 129MPa to 237MPa, elongation from 6% to 22%, and hardness from 61.2HBS to71.5HBS. The modification mechanism for microstructure and mechanical properties of the experimental alloy by ECAP was analyzed.


Metals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 676 ◽  
Author(s):  
Andrey Belyakov

Mechanical properties of polycrystalline structural metals and alloys are significantly affected by their microstructures including phase content, grain/subgrain sizes, grain boundary distribution, dispersed particles, dislocation density, etc.[...]


2013 ◽  
Vol 747-748 ◽  
pp. 289-294
Author(s):  
Yi Zhang ◽  
Fu Yin Han ◽  
Yong Sheng Wang ◽  
Wei Liang ◽  
Ping Wang ◽  
...  

The Mg-6Zn-2Si alloy was processed by equal channel angular pressing (ECAP) for 4 passes and 8 passes at 573K, and the microstructure and mechanical properties of the alloy before and after ECAP were studied. The results show that Chinese script type interphase of Mg2Si was crushed into dispersed particles, and significant grain refinement was also introduced to the matrix phase (α-Mg) and Mg51Zn20 phase after 4 passes of ECAP. The yield strength was increased by 180%, elongation by 140% and tensile strength by 75%. The microstructure and mechanical properties remained reasonably constant between 4 and 8 passes of ECAP. The mechanism of improvement on microstructure and mechanical properties of the experimental alloy by subjecting ECAP was also investigated.


2013 ◽  
Vol 589-590 ◽  
pp. 337-341 ◽  
Author(s):  
Yue Liu ◽  
Chuan Zhen Huang ◽  
Han Lian Liu ◽  
Bin Zou ◽  
Peng Yao ◽  
...  

Ti(C,N)-TiB2-WC composite ceramic cutting tool materials with nano-scale additives Ni and Mo, and micro-scale additives Ni and Mo as sintering aids were sintered respectively at a temperature of 1550 °C for holding time of 1hour in vacuum by a hot-press technique. The effects of nano-scale additives Ni and Mo, and micro-scale additives Ni and Mo on microstructure and mechanical properties of composites were compared and investigated. It is concluded that the wettability of nano-scale Ni and Mo to the composites is better than that of micro-scale Ni and Mo. The nano-scale whiskers were found in the composite ceramic tool materials with nano-scale additives. The addition of nano-scale Ni and Mo instead of micro-scale Ni and Mo could make the flexural strength and fracture toughness of Ti(C, N)-TiB2 –WC composites have a promotion, but could not make the hardness of the composites increase in this study.


2020 ◽  
Vol 30 (28) ◽  
pp. 1910491 ◽  
Author(s):  
Alain Reiser ◽  
Lukas Koch ◽  
Kathleen A. Dunn ◽  
Toshiki Matsuura ◽  
Futoshi Iwata ◽  
...  

2006 ◽  
Vol 532-533 ◽  
pp. 37-40 ◽  
Author(s):  
Chuan Zhen Huang ◽  
Jun Wang ◽  
Li Qiang Xu ◽  
Sui Lian Wang ◽  
Han Lian Liu

Advanced Ti(C, N) matrix cermet tool materials with higher mechanical properties are successfully developed by dispersing nano-scale Al2O3 powder into the micro-scale Ti(C, N) matrix and Ni-Mo bonding phases powder. The effect of the content of nano-scale alumina on the microstructure and mechanical properties of micro-scale Ti(C, N) matrix cermet tool materials are investigated. The research results show that a type of Ti(C, N) matrix cermet tool material has the most optimal flexural strength of 900MPa, Vickers hardness of 17.4GPa and fracture toughness of 9.95MPa.m1/2 when the content of nano-scale alumina is 12% in term of mass. It is found from the microstructure analysis that the main reason of the mechanical properties improvement is the grain fining effect caused by nano-scale Al2O3.


Sign in / Sign up

Export Citation Format

Share Document