The distinct role of non-noble metal Cu NPs deposition in boosting the overall photocatalytic performance over a ternary Zn-based photocatalyst system

2021 ◽  
Vol 875 ◽  
pp. 160068
Author(s):  
Fanyun Chen ◽  
Xingqiang Liu ◽  
Wanqin Zhou ◽  
Fang Li ◽  
Changlin Yu ◽  
...  
2015 ◽  
Vol 26 (12) ◽  
pp. 125403 ◽  
Author(s):  
Shoutian Ren ◽  
Guoliang Zhao ◽  
Yingying Wang ◽  
Benyang Wang ◽  
Qiang Wang

Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2206
Author(s):  
Gaoqian Yuan ◽  
Gen Zhang ◽  
Kezhuo Li ◽  
Faliang Li ◽  
Yunbo Cao ◽  
...  

Loading a noble metal on Bi4Ti3O12 could enable the formation of the Schottky barrier at the interface between the former and the latter, which causes electrons to be trapped and inhibits the recombination of photoelectrons and photoholes. In this paper, AgPt/Bi4Ti3O12 composite photocatalysts were prepared using the photoreduction method, and the effects of the type and content of noble metal on the photocatalytic performance of the catalysts were investigated. The photocatalytic degradation of rhodamine B (RhB) showed that the loading of AgPt bimetallic nanoparticles significantly improved the catalytic performance of Bi4Ti3O12. When 0.10 wt% noble metal was loaded, the degradation rate for RhB of Ag0.7Pt0.3/Bi4Ti3O12 was 0.027 min−1, which was respectively about 2, 1.7 and 3.7 times as that of Ag/Bi4Ti3O12, Pt/Bi3Ti4O12 and Bi4Ti3O12. The reasons may be attributed as follows: (i) the utilization of visible light was enhanced due to the surface plasmon resonance effect of Ag and Pt in the visible region; (ii) Ag nanoparticles mainly acted as electron acceptors to restrain the recombination of photogenerated electron-hole pairs under visible light irradiation; and (iii) Pt nanoparticles acted as electron cocatalysts to further suppress the recombination of photogenerated electron-hole pairs. The photocatalytic performance of Ag0.7Pt0.3/Bi4Ti3O12 was superior to that of Ag/Bi4Ti3O12 and Pt/Bi3Ti4O12 owing to the synergistic effect between Ag and Pt nanoparticles.


Author(s):  
Yanwen Wang ◽  
Rong Liang ◽  
Chao Qin ◽  
Lei Ren ◽  
Zhizhen Ye ◽  
...  

Antimony sulfide (Sb2S3) is a light absorbing material with strong visible light response, which is suitable for efficient and low-cost photoelectrodes. Nano-structured films have unique advantages in constructing photoelectrodes due...


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2231
Author(s):  
Qingjun Lu ◽  
Hao Shen ◽  
Han Yu ◽  
Jing Fu ◽  
Hui Dong ◽  
...  

The role of Kupffer cells (KCs) in liver regeneration is complicated and controversial. To investigate the distinct role of F4/80+ KCs at the different stages of the regeneration process, two-thirds partial hepatectomy (PHx) was performed in mice to induce physiological liver regeneration. In pre- or post-PHx, the clearance of KCs by intraperitoneal injection of the anti-F4/80 antibody (α-F4/80) was performed to study the distinct role of F4/80+ KCs during the regenerative process. In RNA sequencing of isolated F4/80+ KCs, the initiation phase was compared with the progression phase. Immunohistochemistry and immunofluorescence staining of Ki67, HNF-4α, CD-31, and F4/80 and Western blot of the TGF-β2 pathway were performed. Depletion of F4/80+ KCs in pre-PHx delayed the peak of hepatocyte proliferation from 48 h to 120 h, whereas depletion in post-PHx unexpectedly led to persistent inhibition of hepatocyte proliferation, indicating the distinct role of F4/80+ KCs in the initiation and progression phases of liver regeneration. F4/80+ KC depletion in post-PHx could significantly increase TGF-β2 serum levels, while TGF-βRI partially rescued the impaired proliferation of hepatocytes. Additionally, F4/80+ KC depletion in post-PHx significantly lowered the expression of oncostatin M (OSM), a key downstream mediator of interleukin-6, which is required for hepatocyte proliferation during liver regeneration. In vivo, recombinant OSM (r-OSM) treatment alleviated the inhibitory effect of α-F4/80 on the regenerative progression. Collectively, F4/80+ KCs release OSM to inhibit TGF-β2 activation, sustaining hepatocyte proliferation by releasing a proliferative brake.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wenjun Yang ◽  
Ivan Yu. Chernyshov ◽  
Robin K. A. van Schendel ◽  
Manuela Weber ◽  
Christian Müller ◽  
...  

AbstractAny catalyst should be efficient and stable to be implemented in practice. This requirement is particularly valid for manganese hydrogenation catalysts. While representing a more sustainable alternative to conventional noble metal-based systems, manganese hydrogenation catalysts are prone to degrade under catalytic conditions once operation temperatures are high. Herein, we report a highly efficient Mn(I)-CNP pre-catalyst which gives rise to the excellent productivity (TOF° up to 41 000 h−1) and stability (TON up to 200 000) in hydrogenation catalysis. This system enables near-quantitative hydrogenation of ketones, imines, aldehydes and formate esters at the catalyst loadings as low as 5–200 p.p.m. Our analysis points to the crucial role of the catalyst activation step for the catalytic performance and stability of the system. While conventional activation employing alkoxide bases can ultimately provide catalytically competent species under hydrogen atmosphere, activation of Mn(I) pre-catalyst with hydride donor promoters, e.g. KHBEt3, dramatically improves catalytic performance of the system and eliminates induction times associated with slow catalyst activation.


2018 ◽  
Vol 94 (6) ◽  
Author(s):  
Constantina Rousidou ◽  
Dionysis Karaiskos ◽  
Despoina Myti ◽  
Evangelos Karanasios ◽  
Panagiotis A Karas ◽  
...  
Keyword(s):  
Soil Ph ◽  

Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 107 ◽  
Author(s):  
Ming Qin ◽  
Qing Chang ◽  
Yinkai Yu ◽  
Hongjing Wu

By the deposition of noble metal nanoparticles on a metal oxide substrate with a specific micro-/nanostructure, namely, yolk-shell structure, a remarkable improvement in photocatalytic performance can be achieved by the composites. Nevertheless, noble metal nanoparticles only distribute on the surface shell of metal oxide substrates when the conventional wet-chemistry reduction approach is employed. Herein, we proposed a novel acoustic levitation synthesis of Pt nanoparticles deposited on yolk-shell La2O3. The composites not only displayed well-defined, homogeneous distribution of Pt NPs on the exterior shell of La2O3 and the interior La2O3 core, but an enhanced chemical interaction between Pt and La2O3. The unique structure not only can display improved photocatalytic degradation rate toward methyl orange, but also may show great potential in fields of hydrogen generation, environmental protection, etc. The novel acoustic levitation synthesis can supplement the methodology of synthesizing well dispersed noble metal oxides over the whole yolk-shell structure through noble metal NPs deposition method.


2013 ◽  
Vol 110 (17) ◽  
pp. 6669-6673 ◽  
Author(s):  
X. Xia ◽  
S. Xie ◽  
M. Liu ◽  
H.-C. Peng ◽  
N. Lu ◽  
...  

Aquaculture ◽  
2007 ◽  
Vol 267 (1-4) ◽  
pp. 188-198 ◽  
Author(s):  
Núria Montserrat ◽  
Pedro Gómez-Requeni ◽  
Giovanni Bellini ◽  
Encarnación Capilla ◽  
Jaume Pérez-Sánchez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document