Mechanism of microstructure and texture evolution during shear loading of AA6063 alloys

2022 ◽  
Vol 889 ◽  
pp. 161607
Author(s):  
Rama K. Sabat ◽  
Waqas Muhammad ◽  
Raja K. Mishra ◽  
Kaan Inal
2015 ◽  
Vol 224 ◽  
pp. 143-148 ◽  
Author(s):  
Marina Borodachenkova ◽  
Wei Wen ◽  
Frédéric Barlat ◽  
António Pereira ◽  
José Grácio

Author(s):  
S. Naka ◽  
R. Penelle ◽  
R. Valle

The in situ experimentation technique in HVEM seems to be particularly suitable to clarify the processes involved in recrystallization. The material under investigation was unidirectionally cold-rolled titanium of commercial purity. The problem was approached in two different ways. The three-dimensional analysis of textures was used to describe the texture evolution during the primary recrystallization. Observations of bulk-annealed specimens or thin foils annealed in the microscope were also made in order to provide information concerning the mechanisms involved in the formation of new grains. In contrast to the already published work on titanium, this investigation takes into consideration different values of the cold-work ratio, the temperature and the annealing time.Two different models are commonly used to explain the recrystallization textures i.e. the selective grain growth model (Beck) or the oriented nucleation model (Burgers). The three-dimensional analysis of both the rolling and recrystallization textures was performed to identify the mechanismsl involved in the recrystallization of titanium.


2021 ◽  
Vol 147 (3) ◽  
pp. 04020177
Author(s):  
Daniela Dominica Porcino ◽  
Theodoros Triantafyllidis ◽  
Torsten Wichtmann ◽  
Giuseppe Tomasello

PCI Journal ◽  
1996 ◽  
Vol 41 (3) ◽  
pp. 64-80 ◽  
Author(s):  
Khaled A. Soudki ◽  
Jeffrey S. West ◽  
Sami H. Rizkalla ◽  
Bruce Blackett

2020 ◽  
Author(s):  
Chi-Toan Nguyen ◽  
Alistair Garner ◽  
Javier Romero ◽  
Antoine Ambard ◽  
Michael Preuss ◽  
...  

2020 ◽  
Vol 277 ◽  
pp. 128329 ◽  
Author(s):  
Y.H. Liu ◽  
Z.B. Zhao ◽  
C.B. Zhang ◽  
Q.J. Wang ◽  
H. Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document