Microstructures and mechanical properties of NiTi shape memory alloys fabricated by wire arc additive manufacturing

2022 ◽  
Vol 892 ◽  
pp. 162193
Author(s):  
Lin Yu ◽  
Keyu Chen ◽  
Yuanling Zhang ◽  
Jie Liu ◽  
Lei Yang ◽  
...  
Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1683 ◽  
Author(s):  
Xiebin Wang ◽  
Sergey Kustov ◽  
Jan Van Humbeeck

Due to unique functional and mechanical properties, NiTi shape memory alloys are one of the most promising metallic functional materials. However, the poor workability limits the extensive utilization of NiTi alloys as components of complex shapes. The emerging additive manufacturing techniques provide high degrees of freedom to fabricate complex structures. A freeform fabrication of complex structures by additive manufacturing combined with the unique functional properties (e.g., shape memory effect and superelasticity) provide great potential for material and structure design, and thus should lead to numerous applications. In this review, the unique microstructure that is generated by selective laser melting (SLM) is discussed first. Afterwards, the previously reported transformation behavior and mechanical properties of NiTi alloys produced under various SLM conditions are summarized.


2006 ◽  
Vol 8 (4) ◽  
pp. 247-252 ◽  
Author(s):  
J. Mentz ◽  
M. Bram ◽  
H. P. Buchkremer ◽  
D. Stöver

Author(s):  
RPM Guimarães ◽  
F Pixner ◽  
G Trimmel ◽  
J Hobisch ◽  
T Rath ◽  
...  

Nickel–titanium alloys are the most widely used shape memory alloys due to their outstanding shape memory effect and superelasticity. Additive manufacturing has recently emerged in the fabrication of shape memory alloy but despite substantial advances in powder-based techniques, less attention has been focused on wire-based additive manufacturing. This work reports on the preliminary results for the process-related microstructural and phase transformation changes of Ni-rich nickel–titanium alloy additively manufactured by wire-based electron beam freeform fabrication. To study the feasibility of the process, a simple 10-layer stack structure was successfully built and characterized, exhibiting columnar grains and achieving one-step reversible martensitic–austenitic transformation, thus showing the potential of this additive manufacturing technique for processing shape memory alloys.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4718
Author(s):  
Pedro Carreira ◽  
Fábio Cerejo ◽  
Nuno Alves ◽  
Maria Teresa Vieira

This research was performed so as to investigate the additive manufacturing of NiTi shape memory alloys, which is associated with direct processes, such as selective laser melting. In addition to its expensive production costs, NiTi readily undergoes chemical and phase modifications, mainly as a result of Ni loss during processing as a result of high temperatures. This research explores the potential usefulness of NiTi as well as its limitations using indirect additive processes, such as fused filament fabrication (FFF). The first step was to evaluate the NiTi critical powder volume content (CPVC) needed to process high-quality filaments (via extrusion). A typical 3D printer can build a selected part/system/device layer-by-layer from the filaments, followed by debinding and sintering (SDS), in order to generate a near-net-shape object. The mixing, extruding (filament), printing (shaping), debinding, and sintering steps were extensively studied in order to optimize their parameters. Moreover, for the sintering step, two main targets should be met, namely: the reduction of contamination during the process in order to avoid the formation of secondary phases, and the decrease in sintering temperature, which also contributes to reducing the production costs. This study aims to demonstrate the possibility of using FFF as an additive manufacturing technology for processing NiTi.


2019 ◽  
Vol 271 ◽  
pp. 152-161 ◽  
Author(s):  
C. Wang ◽  
X.P. Tan ◽  
Z. Du ◽  
S. Chandra ◽  
Z. Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document