Room Temperature CPP-Giant Magnetoresistance in Ni/Cu Multilayered Nanowires

2021 ◽  
pp. 162286
Author(s):  
Mohammad Reza Mardaneh ◽  
Mohammad Almasi Kashi ◽  
Maryam Ghaffari
1994 ◽  
Vol 65 (16) ◽  
pp. 2108-2110 ◽  
Author(s):  
H. L. Ju ◽  
C. Kwon ◽  
Qi Li ◽  
R. L. Greene ◽  
T. Venkatesan

1997 ◽  
Vol 70 (3) ◽  
pp. 396-398 ◽  
Author(s):  
S. Dubois ◽  
C. Marchal ◽  
J. M. Beuken ◽  
L. Piraux ◽  
J. L. Duvail ◽  
...  

Author(s):  
Y. Yang ◽  
M. Asheghi

Giant Magnetoresistance (GMR) head technology is one of the latest advancement in hard disk drive (HDD) storage industry. The GMR head superlattice structure consists of alternating layers of extremely thin metallic ferromagnet and paramagnet films. A large decrease in the resistivity from antiparallel to parallel alignment of the film magnetizations can be observed, known as giant magnetoresistance (GMR) effect. The present work characterizes the in-plane electrical and thermal conductivities of Cu/CoFe GMR multilayer structure in the temperature range of 50 K to 340 K using Joule-heating and electrical resistance thermometry in suspended bridges. The thermal conductivity of the GMR layer monotonously increased from 25 Wm−1K−1 (at 55 K) to nearly 50 Wm−1K−1 (at room temperature). We also report the GMR ratio of 17% and a large negative magnetothermal resistance effect (GMTR) of 33% in Cu/CoFe superlattice structure. The Boltzmann transport equation (BTE) is used to estimate the GMR ratio, and to investigate the effect of repeats, as well as the spin-dependent interface and boundary scatting on the transport properties of the GMR structure. Aside from the interesting underlying physics, these data can be used in the predictions of the Electrostatic Discharge (ESD) failure and self-heating in GMR heads.


Nanomaterials ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 5
Author(s):  
Himeyo Kamimura ◽  
Masamitsu Hayashida ◽  
Takeshi Ohgai

Anodized aluminum oxide (AAO) films, which have numerous nanochannels ca. 75 nm in diameter, D and ca. 70 µm in length, L (ca. 933 in aspect ratio, L/D), were used as a template material for growing Co/Cu multilayered nanowire arrays. The multilayered nanowires with alternating Cu layer and Co layers were synthesized by using an electrochemical pulsed-potential deposition technique. The thickness of the Cu layer was adjusted from ca. 2 to 4 nm while that of the Co layer was regulated from ca. 13 to 51 nm by controlling the pulsed potential parameters. To get a Co/Cu multilayered nanowire in an electrochemical in-situ contact with a sputter-deposited Au thin layer, the pulsed potential deposition was continued up to ca. 5000 cycles until the nanowire reached out toward the surface of AAO template. Current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) effect reached up to ca. 23.5% at room temperature in Co/Cu multilayered nanowires with ca. 3500 Co/Cu bilayers (Cu: 1.4 nm and Co: 18.8 nm). When decreasing the thickness of Co layer, the CPP-GMR value increased due to the Valet–Fert model in the long spin diffusion limit.


1997 ◽  
Vol 165 (1-3) ◽  
pp. 30-33 ◽  
Author(s):  
S. Dubois ◽  
J.M. Beuken ◽  
L. Piraux ◽  
J.L. Duvail ◽  
A. Fert ◽  
...  

1993 ◽  
Vol 313 ◽  
Author(s):  
S. Hossain ◽  
A. Waknis ◽  
D. Seale ◽  
M. Tan ◽  
M.R. Parker ◽  
...  

ABSTRACTThe phenomenon of giant magnetoresistance (GMR), previously measured only in multilayer films comprising ferromagnetic layers separated by nonmagnetic spacers, has recently been observed in single layer ‘granular’ alloy thin films prepared by cosputtering a ferromagnet and a nonmagnet which tend to phase separate (cluster) under equilibrium conditions. We have systematically studied the magnetoresistance of two new phase separating GMR systems (Ni66Fe16Co18-Ag and Co9oFelo-Ag) both of which exhibit large room temperature GMR (>11% and >14%, respectively). We have also attempted to influence the details of the field dependence of the magnetoresistance in the previously studied Co-Ag system by employing novel processing methods including interrupted sputtering and layering of the Co-Ag alloy with Cu spacers.


Sign in / Sign up

Export Citation Format

Share Document