The serration behavior and mechanical properties of Al0.1CoCrFeNi high-entropy alloy under coupled electron-heat field

2021 ◽  
pp. 162789
Author(s):  
Yafei Wang ◽  
Liu Xia ◽  
Hongjie Zhang ◽  
Yitao Cao ◽  
Aigang Pan ◽  
...  
Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3722
Author(s):  
Ruoyu Liu ◽  
Xianrui Yao ◽  
Bingfeng Wang

Serration behavior is a kind of plastic instability phenomenon of materials, which widely exists in the high-entropy alloys and has influence on microstructure and mechanical properties. In this work, the microstructure and mechanical properties of a NiCrFeCoMn high-entropy alloy (HEA) were studied under high-speed impact. The microstructure of a NiCrFeCoMn HEA were investigated by optical microscope (OM), scanning electron microscope (SEM), electron backscatter diffraction (EBSD), and transmission electron microscope (TEM). The dislocation density increased with the true strain at high-strain-rate deformation, and the dislocations can be hindered and released continually by the twin layers, resulting in serration on the true stress—true strain curve. When values of the strain rates are 1250, 2000 and 4800 s−1, the yield strength of the deformed NiCrFeCoMn HEA are 510, 525 and 680 MPa, respectively. Moreover, the fluctuation of the serration became more serious with the increasing of the strain rate. Compared with the as-cast NiCrFeCoMn HEA, the true stress—true strain curve of the deformed NiCrFeCoMn HEAwas smoother.


Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 345 ◽  
Author(s):  
Lianzan Yang ◽  
Yongyan Li ◽  
Zhifeng Wang ◽  
Weimin Zhao ◽  
Chunling Qin

High-entropy alloys (HEAs) present excellent mechanical properties. However, the exploitation of chemical properties of HEAs is far less than that of mechanical properties, which is mainly limited by the low specific surface area of HEAs synthesized by traditional methods. Thus, it is vital to develop new routes to fabricate HEAs with novel three-dimensional structures and a high specific surface area. Herein, we develop a facile approach to fabricate nanoporous noble metal quasi-HEA microspheres by melt-spinning and dealloying. The as-obtained nanoporous Cu30Au23Pt22Pd25 quasi-HEA microspheres present a hierarchical porous structure with a high specific surface area of 69.5 m2/g and a multiphase approximatively componential solid solution characteristic with a broad single-group face-centered cubic XRD pattern, which is different from the traditional single-phase or two-phase solid solution HEAs. To differentiate, these are named quasi-HEAs. The synthetic strategy proposed in this paper opens the door for the synthesis of porous quasi-HEAs related materials, and is expected to promote further applications of quasi-HEAs in various chemical fields.


Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 41
Author(s):  
Yin-Yu Chang ◽  
Cheng-Hsi Chung

Multi-element material coating systems have received much attention for improving the mechanical performance in industry. However, they are still focused on ternary systems and seldom beyond quaternary ones. High entropy alloy (HEA) bulk material and thin films are systems that are each comprised of at least five principal metal elements in equally matched proportions, and some of them are found possessing much higher strength than traditional alloys. In this study, CrVTiNbZr high entropy alloy and nitrogen contained CrVTiNbZr(N) nitride coatings were synthesized using high ionization cathodic-arc deposition. A chromium-vanadium alloy target, a titanium-niobium alloy target and a pure zirconium target were used for the deposition. By controlling the nitrogen content and cathode current, the CrNbTiVZr(N) coating with gradient or multilayered composition control possessed different microstructures and mechanical properties. The effect of the nitrogen content on the chemical composition, microstructure and mechanical properties of the CrVTiNbZr(N) coatings was investigated. Compact columnar microstructure was obtained for the synthesized CrVTiNbZr(N) coatings. The CrVTiNbZrN coating (HEAN-N165), which was deposited with nitrogen flow rate of 165 standard cubic centimeters per minute (sccm), exhibited slightly blurred columnar and multilayered structures containing CrVN, TiNbN and ZrN. The design of multilayered CrVTiNbZrN coatings showed good adhesion strength. Improvement of adhesion strength was obtained with composition-gradient interlayers. The CrVTiNbZrN coating with nitrogen content higher than 50 at.% possessed the highest hardness (25.2 GPa) and the resistance to plastic deformation H3/E*2 (0.2 GPa) value, and therefore the lowest wear rate was obtained because of high abrasion wear resistance.


2021 ◽  
Vol 812 ◽  
pp. 141147
Author(s):  
Xianzhe Zhong ◽  
Qingming Zhang ◽  
Jing Xie ◽  
Mingze Wu ◽  
Fuqing Jiang ◽  
...  

2017 ◽  
Vol 61 (1) ◽  
pp. 117-123 ◽  
Author(s):  
TianDang Huang ◽  
Li Jiang ◽  
ChangLiang Zhang ◽  
Hui Jiang ◽  
YiPing Lu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document