Well-dispersed Li2CoTi3O8 nanoparticles as a multifunctional material for lithium-ion batteries and lithium-sulfur batteries

2021 ◽  
pp. 162926
Author(s):  
Mao Qian ◽  
Yakun Tang ◽  
Lang Liu ◽  
Yang Gao ◽  
Xiaohui Li
2018 ◽  
Vol 47 (8) ◽  
pp. 2837-2872 ◽  
Author(s):  
Wenshuai Chen ◽  
Haipeng Yu ◽  
Sang-Young Lee ◽  
Tong Wei ◽  
Jian Li ◽  
...  

Nanocellulose from various kinds of sources and nanocellulose-derived materials have been developed for electrochemical energy storage, including supercapacitors, lithium-ion batteries, lithium–sulfur batteries, and sodium-ion batteries.


Batteries ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 45
Author(s):  
Krzysztof Siczek

Currently, apart from the widely known lithium-ion batteries, there are competitive solutions in the form of, for example, Li-S batteries. While the results of studies on the toxicity of Li-ion battery components are published, such studies on the components of Li-S cells are just beginning. The purpose of the current review was to identify materials used in the production of Li-S batteries and their toxicity, especially for humans. The review showed many kinds of materials with different levels of toxicity utilized for manufacturing of these cells. Some materials are of low toxicity, while some others are of the high one. A lot of materials have assigned different hazard statements. For some of the materials, no hazard statements were assigned, although such materials are toxic. No data related to the toxicity of some materials were found in the literature. This points out the need to further studies on their toxicity and legal actions to assign appropriate hazard statements.


2021 ◽  
Vol 10 (1) ◽  
pp. 20-33
Author(s):  
Lian Wu ◽  
Yongqiang Dai ◽  
Wei Zeng ◽  
Jintao Huang ◽  
Bing Liao ◽  
...  

Abstract Fast charge transfer and lithium-ion transport in the electrodes are necessary for high performance Li–S batteries. Herein, a N-doped carbon-coated intercalated-bentonite (Bent@C) with interlamellar ion path and 3D conductive network architecture is designed to improve the performance of Li–S batteries by expediting ion/electron transport in the cathode. The interlamellar ion pathways are constructed through inorganic/organic intercalation of bentonite. The 3D conductive networks consist of N-doped carbon, both in the interlayer and on the surface of the modified bentonite. Benefiting from the unique structure of the Bent@C, the S/Bent@C cathode exhibits a high initial capacity of 1,361 mA h g−1 at 0.2C and achieves a high reversible capacity of 618.1 m Ah g−1 at 2C after 500 cycles with a sulfur loading of 2 mg cm−2. Moreover, with a higher sulfur loading of 3.0 mg cm−2, the cathode still delivers a reversible capacity of 560.2 mA h g−1 at 0.1C after 100 cycles.


2015 ◽  
Author(s):  
◽  
Donald A. Dornbusch

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] The following dissertation investigates different aspects of lithium-sulfur batteries. Lithium-sulfur batteries have a higher theoretical capacity than current lithium-ion chemistries. First, a study on the lithium-metal electrode and the formation of dendrites investigates how flow impacts the failure from dendrites of these electrodes. Second, a study relying on charging to avoid the soluble intermediates generated through charge/discharge of sulfur-cathodes which are the primary cause of capacity fade in these systems. Third, sulfur is polymerized through radical polymerization with diene comonomers in order to reduce the solubility and mobility of the intermediates generated during cycling. Using Brunauer-Emmett-Teller (BET) theory, the surface area and pore volume can be observed before and after cycling demonstrating the amount of mobility the active material has during cycling. Finally, a study on the conduction phenomena in convection batteries is studied through a literature review and COMSOL simulation.


Sign in / Sign up

Export Citation Format

Share Document