scholarly journals Longitudinal decreases in multiple cerebrospinal fluid biomarkers of neuronal injury in symptomatic late onset Alzheimer's disease

2018 ◽  
Vol 14 (7) ◽  
pp. 869-879 ◽  
Author(s):  
Courtney L. Sutphen ◽  
Lena McCue ◽  
Elizabeth M. Herries ◽  
Chengjie Xiong ◽  
Jack H. Ladenson ◽  
...  
2014 ◽  
Vol 125 (10) ◽  
pp. 747-754 ◽  
Author(s):  
Hung-Chou Kuo ◽  
Hsiu-Chuan Yen ◽  
Chin-Chang Huang ◽  
Wen-Chuin Hsu ◽  
Hsing-Ju Wei ◽  
...  

2021 ◽  
pp. 1-6
Author(s):  
Jagan A. Pillai ◽  
James Bena ◽  
Lynn M. Bekris ◽  
Nancy Foldvary-Schaefer ◽  
Catherine Heinzinger ◽  
...  

Sleep dysfunction has been identified in the pathophysiology of Alzheimer’s disease (AD); however, the role and mechanism of circadian rhythm dysfunction is less well understood. In a well-characterized cohort of patients with AD at the mild cognitive impairment stage (MCI-AD), we identify that circadian rhythm irregularities were accompanied by altered humoral immune responses detected in both the cerebrospinal fluid and plasma as well as alterations of cerebrospinal fluid biomarkers of neurodegeneration. On the other hand, sleep disruption was more so associated with abnormalities in circulating markers of immunity and inflammation and decrements in cognition.


2018 ◽  
Vol 15 (9) ◽  
pp. 820-827 ◽  
Author(s):  
Ryan Van Patten ◽  
Anne M. Fagan ◽  
David A.S. Kaufman

Background: There exists a need for more sensitive measures capable of detecting subtle cognitive decline due to Alzheimer's disease. Objective: To advance the literature in Alzheimer’s disease by demonstrating that performance on a cued-Stroop task is impacted by preclinical Alzheimer's disease neuropathology. Method: Twenty-nine cognitively asymptomatic older adults completed a computerized, cued-Stroop task in which accuracy rates and intraindividual variability in reaction times were the outcomes of interest. Cerebrospinal fluid biomarkers of Aβ42 and tau were measured and participants were then grouped according to a published p-tau/Aβ42 cutoff reflecting risk for Alzheimer’s disease (preclinical Alzheimer's disease = 14; control = 15). Results: ANOVAs indicated that accuracy rates did not differ between the groups but 4-second delay incongruent color-naming Stroop coefficient of variation reaction times were higher in the preclinical Alzheimer’s disease group compared to the control group, reflecting increased within-person variability. Moreover, partial correlations showed no relationships between cerebrospinal fluid biomarkers and accuracy rates. However, increases in coefficient of variation reaction times correlated with decreased Aβ42 and increases in p-tau and the p-tau/Aβ42 ratio. Conclusion: Results supported the ability of the computerized, cued-Stroop task to detect subtle Alzheimer’s disease neuropathology using a small cohort of cognitively asymptomatic older adults. The ongoing measurement of cued-Stroop coefficient of variation reaction times has both scientific and clinical utility in preclinical Alzheimer’s disease.


2017 ◽  
Vol 39 (2) ◽  
pp. 971-984 ◽  
Author(s):  
Christine L. Tardif ◽  
Gabriel A. Devenyi ◽  
Robert S. C. Amaral ◽  
Sandra Pelleieux ◽  
Judes Poirier ◽  
...  

2021 ◽  
Vol 11 (2) ◽  
pp. 215
Author(s):  
Donovan A. McGrowder ◽  
Fabian Miller ◽  
Kurt Vaz ◽  
Chukwuemeka Nwokocha ◽  
Cameil Wilson-Clarke ◽  
...  

Alzheimer’s disease is a progressive, clinically heterogeneous, and particularly complex neurodegenerative disease characterized by a decline in cognition. Over the last two decades, there has been significant growth in the investigation of cerebrospinal fluid (CSF) biomarkers for Alzheimer’s disease. This review presents current evidence from many clinical neurochemical studies, with findings that attest to the efficacy of existing core CSF biomarkers such as total tau, phosphorylated tau, and amyloid-β (Aβ42), which diagnose Alzheimer’s disease in the early and dementia stages of the disorder. The heterogeneity of the pathophysiology of the late-onset disease warrants the growth of the Alzheimer’s disease CSF biomarker toolbox; more biomarkers showing other aspects of the disease mechanism are needed. This review focuses on new biomarkers that track Alzheimer’s disease pathology, such as those that assess neuronal injury (VILIP-1 and neurofilament light), neuroinflammation (sTREM2, YKL-40, osteopontin, GFAP, progranulin, and MCP-1), synaptic dysfunction (SNAP-25 and GAP-43), vascular dysregulation (hFABP), as well as CSF α-synuclein levels and TDP-43 pathology. Some of these biomarkers are promising candidates as they are specific and predict future rates of cognitive decline. Findings from the combinations of subclasses of new Alzheimer’s disease biomarkers that improve their diagnostic efficacy in detecting associated pathological changes are also presented.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Peter Wostyn ◽  
Debby Van Dam ◽  
Kurt Audenaert ◽  
Peter Paul De Deyn

Alzheimer's disease (AD), the most common type of dementia among older people, is characterized by the accumulation of β-amyloid (Aβ) senile plaques and neurofibrillary tangles composed of hyperphosphorylated tau in the brain. Despite major advances in understanding the molecular etiology of the disease, progress in the clinical treatment of AD patients has been extremely limited. Therefore, new and more effective therapeutic approaches are needed. Accumulating evidence from human and animal studies suggests that the long-term consumption of caffeine, the most commonly used psychoactive drug in the world, may be protective against AD. The mechanisms underlying the suggested beneficial effect of caffeine against AD remain to be elucidated. In recent studies, several potential neuroprotective effects of caffeine have been proposed. Interestingly, a recent study in rats showed that the long-term consumption of caffeine increased cerebrospinal fluid (CSF) production, associated with the increased expression of Na+-K+ATPase and increased cerebral blood flow. Compromised function of the choroid plexus and defective CSF production and turnover, with diminished clearance of Aβ, may be one mechanism implicated in the pathogenesis of late-onset AD. If reduced CSF turnover is a risk factor for AD, then therapeutic strategies to improve CSF flow are reasonable. In this paper, we hypothesize that long-term caffeine consumption could exert protective effects against AD at least in part by facilitating CSF production, turnover, and clearance. Further, we propose a preclinical experimental design allowing evaluation of this hypothesis.


2015 ◽  
Vol 44 (2) ◽  
pp. 525-539 ◽  
Author(s):  
Jeffrey L. Seeburger ◽  
Daniel J. Holder ◽  
Marc Combrinck ◽  
Catharine Joachim ◽  
Omar Laterza ◽  
...  

2019 ◽  
Vol 76 (10) ◽  
pp. 1833-1863 ◽  
Author(s):  
Kunal Dhiman ◽  
Kaj Blennow ◽  
Henrik Zetterberg ◽  
Ralph N. Martins ◽  
Veer Bala Gupta

Sign in / Sign up

Export Citation Format

Share Document