scholarly journals A review of runoff generation and soil erosion across scales in semiarid south-eastern Spain

2011 ◽  
Vol 75 (12) ◽  
pp. 1254-1261 ◽  
Author(s):  
Y. Cantón ◽  
A. Solé-Benet ◽  
J. de Vente ◽  
C. Boix-Fayos ◽  
A. Calvo-Cases ◽  
...  
2021 ◽  
Author(s):  
Qiufen Zhang ◽  
Xizhi Lv ◽  
Rongxin Chen ◽  
Yongxin Ni ◽  
Li Ma

<p>The slope runoff caused by rainstorm is the main cause of serious soil and water loss in the loess hilly area, the grassland vegetation has a good inhibitory effect on the slope runoff, it is of great significance to reveal the role of grassland vegetation in the process of runoff generation and control mechanism for controlling soil erosion in this area. In this study, typical grassland slopes in hilly and gully regions of the loess plateau were taken as research objects. Through artificial rainfall in the field, the response rules of slope rainfall-runoff process to different grass coverage were explored. The results show that: (1) The time for the slope flow to stabilize is prolonged with the increase of vegetation coverage, and shortened with the increase of rainfall intensity; (2) At 60 mm·h <sup>−1</sup> rainfall intensity, the threshold of grassland vegetation coverage is 75.38%; at 90 mm·h<sup> −1</sup> rainfall intensity, the threshold of grassland vegetation coverage is 90.54%; at 120 mm·h <sup>−1</sup> rainfall intensity, the impact of grassland vegetation coverage on runoff is not significant; (3) the Reynolds number and Froude number of slope flow are 40.07‒695.22 and 0.33‒1.56 respectively, the drag coefficient is 1.42‒43.53. Under conditions of heavy rainfall, the ability of grassland to regulate slope runoff is limited. If only turf protection is considered, about 90% of grassland coverage can effectively cope with soil erosion caused by climatic conditions in loess hilly and gully regions. Therefore, in loess hilly areas where heavy rains frequently occur, grassland's protective effect on soil erosion is obviously insufficient, and investment in vegetation measures for trees and shrubs should be strengthened.</p>


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2221
Author(s):  
Qihua Ran ◽  
Feng Wang ◽  
Jihui Gao

Rainfall patterns and landform characteristics are controlling factors in runoff and soil erosion processes. At a hillslope scale, there is still a lack of understanding of how rainfall temporal patterns affect these processes, especially on slopes with a wide range of gradients and length scales. Using a physically-based distributed hydrological model (InHM), these processes under different rainfall temporal patterns were simulated to illustrate this issue. Five rainfall patterns (constant, increasing, decreasing, rising-falling and falling-rising) were applied to slopes, whose gradients range from 5° to 40° and projective slope lengths range from 25 m to 200 m. The rising-falling rainfall generally had the largest total runoff and soil erosion amount; while the constant rainfall had the lowest ones when the projective slope length was less than 100 m. The critical slope of total runoff was 15°, which was independent of rainfall pattern and slope length. However, the critical slope of soil erosion amount decreased from 35° to 25° with increasing projective slope length. The increasing rainfall had the highest peak discharge and erosion rate just at the end of the peak rainfall intensity. The peak value discharges and erosion rates of decreasing and rising-falling rainfalls were several minutes later than the peak rainfall intensity.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2550 ◽  
Author(s):  
Masoud Meshkat ◽  
Nosratollah Amanian ◽  
Ali Talebi ◽  
Mahboobeh Kiani-Harchegani ◽  
Jesús Rodrigo-Comino

The geometry of hillslopes (plan and profile) affects soil erosion under rainfall-runoff processes. This issue comprises of several factors, which must be identified and assessed if efficient control measures are to be designed. The main aim of the current research was to investigate the impact of surface Roughness Coefficients (RCs) and Complex Hillslopes (CHs) on runoff variables viz. time of generation, time of concentration, and peak discharge value. A total of 81 experiments were conducted with a rainfall intensity of 7 L min−1 on three types of soils with different RCs (i.e., low = 0.015, medium = 0.016, and high = 0.018) and CHs (i.e., profile curvature and plan shape). An inclination of 20% was used for three replications. The results indicate a significant difference (p-value ≤ 0.001) in the above-mentioned runoff variables under different RCs and CHs. Our investigation of the combined effects of RCs and CHs on the runoff variables shows that the plan and profile impacts are consistent with a variation in RC. This can implicate that at low RC, the effect of the plan shape (i.e., convergent) on runoff variables increases but at high RC, the impact of the profile curvature overcomes the plan shapes and the profile curvature’s changes become the criteria for changing the behavior of the runoff variables. The lowest mean values of runoff generation and time of concentration were obtained in the convex-convergent and the convex-divergent at 1.15 min and 2.68 min, respectively, for the soil with an RC of 0.015. The highest mean of peak discharge was obtained in the concave-divergent CH in the soil with an RC of 0.018. We conclude that these results can be useful in order to design planned soil erosion control measures where the soil roughness and slope morphology play a key role in activating runoff generation.


2020 ◽  
Vol 12 (5) ◽  
pp. 2077 ◽  
Author(s):  
Chunfeng Jia ◽  
Baoping Sun ◽  
Xinxiao Yu ◽  
Xiaohui Yang

Vegetation plays an important role in reducing soil erosion. By exploring the allocation and coverage of different types of vegetation, we can improve management practices that can significantly reduce soil erosion. In this experiment, we study runoff and sediment losses on a shrub-grass planted, grass planted, and bare slope under different rainfall intensities. Results showed that the runoff generation time for the three subgrade types decreased as rainfall intensity increased (p < 0.05). The slopes planted with either grass or shrub-grass were able to effectively delay runoff generation. As rainfall intensity increased, the runoff amount increased for all treatments, with runoff in the bare slope increasing the most. The runoff reduction rate from the shrub-grass slope ranged from 54.20% to 63.68%, while the reduction rate from the slope only planted with grass ranged from 38.59% to 55.37%. The sediment yield from the bare slope increased from 662.66 g/m2 (15 mm/h) to 2002.95 g/m2 (82 mm/h) with increasing rainfall intensity in the plot. When compared with the bare slope, both the shrub-grass and planted grass slopes were able to retain an additional 0.9 g/m2 to 4.9 g/m2 of sediment, respectively. An accurate relationship between rainfall intensity, sloped vegetation types, and runoff reduction rate was obtained by regression analysis and validated. These results can provide a reference for improving soil and water conservation via improved vegetation allocation on a sloped roadbed.


2012 ◽  
Vol 68 (1) ◽  
pp. 115-128 ◽  
Author(s):  
Veljko Perović ◽  
Ljubomir Životić ◽  
Ratko Kadović ◽  
Aleksandar Đorđević ◽  
Darko Jaramaz ◽  
...  

Author(s):  
Bui Xuan Dung ◽  
Chin Kolyan ◽  
Nguyen Thi My Linh ◽  
Seng Ravor

To determine the characteristics of runoff generation and soil erosion at the different ages of Acacia plantation in Luong Son headwater of Vietnam, four plots (15m2 plot-1) were set up. Of those, two plots were at up-hill and down-hill in 1-year-old and two plots in 5-years-old Acacia plantation. Soil erosion and runoff were monitored during rainy season from April to September 2018. The main finding includes: (1) Runoff coefficient at Acacia 1-year-old down and up was ranged from 0.36% - 0.46% with the average 0.41%. Acacia 5-years-old, down and up was 0.35% - 0.39%, averaged 0.37%. It shows the slightly different between the locations of two years due to the different ground cover but not statistical significant different; (2). Soil erosion in Acacia-1 and Acacia-5 year old were 21.84 and 14.20 ton/ha/6months, respectively. The data for soil erosion was statistical significant different between two ages of Acacia plantation. Soil erosion at the study site was very high within strong erosion base on TCVN5299: 2009; (3) Both runoff and soil erosion had strong relationship with precipitation (R2 range from 0.52-0.85, with P-value = 0.00). This result suggests that more concerning and applying suitable management for reducing the negative impact of Acacia plantation at the headwater of Vietnam is necessary.      


Sign in / Sign up

Export Citation Format

Share Document