Corrigendum to “An accurate estimation of bone density improves the accuracy of subject-specific finite element” [J. Biomech. 41 (2008) 2483–2491]

2008 ◽  
Vol 41 (15) ◽  
pp. 3294
Author(s):  
Enrico Schileo ◽  
Enrico Dall’Ara ◽  
Fulvia Taddei ◽  
Andrea Malandrino ◽  
Tom Schotkamp ◽  
...  
2008 ◽  
Vol 41 (11) ◽  
pp. 2483-2491 ◽  
Author(s):  
Enrico Schileo ◽  
Enrico Dall’Ara ◽  
Fulvia Taddei ◽  
Andrea Malandrino ◽  
Tom Schotkamp ◽  
...  

2008 ◽  
Vol 41 ◽  
pp. S99
Author(s):  
Enrico Schileo ◽  
Enrico Dall'Ara ◽  
Fulvia Taddei ◽  
Andrea Malandrino ◽  
Tom Schotkamp ◽  
...  

2021 ◽  
pp. 107754632199759
Author(s):  
Jianchun Yao ◽  
Mohammad Fard ◽  
John L Davy ◽  
Kazuhito Kato

Industry is moving towards more data-oriented design and analyses to solve complex analytical problems. Solving complex and large finite element models is still challenging and requires high computational time and resources. Here, a modular method is presented to predict the transmission of vehicle body vibration to the occupants’ body by combining the numerical transfer matrices of the subsystems. The transfer matrices of the subsystems are presented in the form of data which is sourced from either physical tests or finite element models. The structural dynamics of the vehicle body is represented using a transfer matrix at each of the seat mounting points in three triaxial (X–Y–Z) orientations. The proposed method provides an accurate estimation of the transmission of the vehicle body vibration to the seat frame and the seated occupant. This method allows the combination of conventional finite element analytical model data and the experimental data of subsystems to accurately predict the dynamic performance of the complex structure. The numerical transfer matrices can also be the subject of machine learning for various applications such as for the prediction of the vibration discomfort of the occupant with different seat and foam designs and with different physical characteristics of the occupant body.


Author(s):  
Vipul P. Gohil ◽  
Paul K. Canavan ◽  
Hamid Nayeb-Hashemi

This research is aimed to study the variations in the biomechanical behavior of bone and bone tissues with osteoporosis and bone tumors. Osteoporosis and bone tumors reduce the mechanical strength of bone, which creates a greater risk of fracture. In the United States alone, ten million individuals, eight million of whom are women, are estimated to already have osteoporosis, and almost 34 million more are estimated to have low bone mass (osteopenia) placing them at increased risk for osteoporosis. World Health Organization defines osteopenia, as a bone density between one and two and a half standard deviations (SD) below the bone density of a normal young adult. (Osteoporosis is defined as 2.5 SD or more below that reference point.). Together, osteoporosis and osteopenia are expected to affect an estimated 52 million women and men age 50 and older by 2010, and 61 million by 2020. The current medical cost of osteoporosis total is nearly about $18 billion in the U.S. each year. There is a dearth of literature that addresses the effects of osteoporosis on bone tissue properties. Furthermore, there are few studies published related to the effect of bone tumors such as Adamantinoma of long bones, Aneurysmal bone cyst, Hemangioma and others on overall behavior of bone. To understand the variations in bio-mechanical properties of internal tissues of bone with osteoporosis and bone tumor, a 2D finite element (FE) model of bone is developed using ANSYS 9.0 ® (ANSYS Inc., Canonsburg, PA). Trabecular bone is modeled using hexagonal and voronoi cellular structure. This finite element model is subjected to change in BVF (bone volume fraction) and bone architecture caused by osteoporosis. The bone tumor is modeled as finer multi-cellular structure and the effects of its size, location, and property variation of tumor on overall bone behavior are studied. Results from this analysis and comparative data are used to determine behavior of bone and its tissue over different stage of osteoporosis and bone tumor. Results indicate that both bone tumor and osteoporosis significantly change the mechanical properties of the bone. The results show that osteoporosis increases the bone tissue stiffness significantly as BVF reduces. Bone tissue stiffness is found to increase by 80 percent with nearly 55 percent reduction of BVF. The results and methods developed in this research can be implemented to monitor variation in bio-mechanical properties of bone up to tissue level during medication or to determine type and time for need of external support such as bracing.


2007 ◽  
Vol 40 (13) ◽  
pp. 2982-2989 ◽  
Author(s):  
Enrico Schileo ◽  
Fulvia Taddei ◽  
Andrea Malandrino ◽  
Luca Cristofolini ◽  
Marco Viceconti

Author(s):  
William J. Newman ◽  
Richard E. Debski ◽  
Susan M. Moore ◽  
Jeffrey A. Weiss

The shoulder is one of the most complex and often injured joints in the human body. The inferior glenohumeral ligament (IGHL), composed of the anterior band (AB), posterior band (PB) and the axillary pouch, has been shown to be an important contributor to anterior shoulder stability (Turkel, 1981). Injuries to the IGHL of the glenohumeral capsule are especially difficult to diagnose and treat effectively. The objective of this research was to develop a methodology for subject-specific finite element (FE) modeling of the ligamentous structures of the glenohumeral joint, specifically the IGHL, and to determine how changes in material properties affect predicted strains in the IGHL at 60° of external rotation. Using the techniques developed in this research, an improved understanding of the contribution of the IGHL to shoulder stability can be acquired.


2015 ◽  
Vol 137 (3) ◽  
Author(s):  
Yves Pauchard ◽  
Todor G. Ivanov ◽  
David D. McErlain ◽  
Jaques S. Milner ◽  
J. Robert Giffin ◽  
...  

High-tibial osteotomy (HTO) is a surgical technique aimed at shifting load away from one tibiofemoral compartment, in order the reduce pain and progression of osteoarthritis (OA). Various implants have been designed to stabilize the osteotomy and previous studies have been focused on determining primary stability (a global measure) that these designs provide. It has been shown that the local mechanical environment, characterized by bone strains and segment micromotion, is important in understanding healing and these data are not currently available. Finite element (FE) modeling was utilized to assess the local mechanical environment provided by three different fixation plate designs: short plate with spacer, long plate with spacer and long plate without spacer. Image-based FE models of the knee were constructed from healthy individuals (N = 5) with normal knee alignment. An HTO gap was virtually added without changing the knee alignment and HTO implants were inserted. Subsequently, the local mechanical environment, defined by bone compressive strain and wedge micromotion, was assessed. Furthermore, implant stresses were calculated. Values were computed under vertical compression in zero-degree knee extension with loads set at 1 and 2 times the subject-specific body weight (1 BW, 2 BW). All studied HTO implant designs provide an environment for successful healing at 1 BW and 2 BW loading. Implant von Mises stresses (99th percentile) were below 60 MPa in all experiments, below the material yield strength and significantly lower in long spacer plates. Volume fraction of high compressive strain ( > 3000 microstrain) was below 5% in all experiments and no significant difference between implants was detected. Maximum vertical micromotion between bone segments was below 200 μm in all experiments and significantly larger in the implant without a tooth. Differences between plate designs generally became apparent only at 2 BW loading. Results suggest that with compressive loading of 2 BW, long spacer plates experience the lowest implant stresses, and spacer plates (long or short) result in smaller wedge micromotion, potentially beneficial for healing. Values are sensitive to subject bone geometry, highlighting the need for subject-specific modeling. This study demonstrates the benefits of using image-based FE modeling and bone theory to fine-tune HTO implant design.


Sign in / Sign up

Export Citation Format

Share Document