Adaptive changes in micromechanical environments of cancellous and cortical bone in response to in vivo loading and disuse

2019 ◽  
Vol 89 ◽  
pp. 85-94 ◽  
Author(s):  
Haisheng Yang ◽  
Xiaoyu Xu ◽  
Whitney Bullock ◽  
Russell P. Main
2019 ◽  
Vol 141 (3) ◽  
Author(s):  
Alexander W. Caulk ◽  
Jay D. Humphrey ◽  
Sae-Il Murtada

Vascular smooth muscle cells (VSMCs) can regulate arterial mechanics via contractile activity in response to changing mechanical and chemical signals. Contractility is traditionally evaluated via uniaxial isometric testing of isolated rings despite the in vivo environment being very different. Most blood vessels maintain a locally preferred value of in vivo axial stretch while subjected to changes in distending pressure, but both of these phenomena are obscured in uniaxial isometric testing. Few studies have rigorously analyzed the role of in vivo loading conditions in smooth muscle function. Thus, we evaluated effects of uniaxial versus biaxial deformations on smooth muscle contractility by stimulating two regions of the mouse aorta with different vasoconstrictors using one of three testing protocols: (i) uniaxial isometric testing, (ii) biaxial isometric testing, and (iii) axially isometric plus isobaric testing. Comparison of methods (i) and (ii) revealed increased sensitivity and contractile capacity to potassium chloride and phenylephrine (PE) with biaxial isometric testing, and comparison of methods (ii) and (iii) revealed a further increase in contractile capacity with isometric plus isobaric testing. Importantly, regional differences in estimated in vivo axial stretch suggest locally distinct optimal biaxial configurations for achieving maximal smooth muscle contraction, which can only be revealed with biaxial testing. Such differences highlight the importance of considering in vivo loading and geometric configurations when evaluating smooth muscle function. Given the physiologic relevance of axial extension and luminal pressurization, we submit that, when possible, axially isometric plus isobaric testing should be employed to evaluate vascular smooth muscle contractile function.


2019 ◽  
Vol 25 (13-14) ◽  
pp. 964-977 ◽  
Author(s):  
Brittany Taylor ◽  
Sarah Indano ◽  
Yasonia Yankannah ◽  
Pushpendra Patel ◽  
Xiomara I. Perez ◽  
...  
Keyword(s):  

2013 ◽  
Vol 22 (12) ◽  
pp. 3039-3046 ◽  
Author(s):  
Stephan N. Schön ◽  
Faik K. Afifi ◽  
Helmut Rasch ◽  
Felix Amsler ◽  
Niklaus F. Friederich ◽  
...  

Tomography ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 180-188
Author(s):  
Harry Hothi ◽  
Arianna Cerquiglini ◽  
Lukas Büel ◽  
Johann Henckel ◽  
Lukas B. Moser ◽  
...  

Background: SPECT/CT distribution patterns in patients with total knee replacements have previously been correlated with factors such as time of implantation, implant type and alignment. It is unknown, however, if an increased and more extended bone tracer uptake (BTU) in SPECT/CT, representing loading of the joint, correlates with findings from retrieval studies. The aim of this study was to further understand this subject. Materials and Methods: 62 retrieved TKA were included. SPECT/CT was performed prior to revision. Quantitative and qualitative medio-lateral comparisons of BTU intensity and distribution in the tibia were performed. Retrieval analysis was performed with a micro-CT method to assess the thickness differences between medial and lateral sides of polyethylene inserts with symmetrical designs. Results: In the subgroup of TKA with asymmetrical SPECT/CT distribution, there was a significant correlation between retrieval and medical imaging data (p = 0.0355): patients showing a more extended BTU in the medial compartment also had a significantly thinner insert in the medial compartment, and vice versa in the lateral side. Conclusion: This is the first study comparing BTU distribution patterns and retrieval findings. Our results support the hypothesis that SPECT/CT is able to identify bone activity due to implant position and loading.


Bone ◽  
2009 ◽  
Vol 44 ◽  
pp. S22
Author(s):  
K.K. Nishiyama ◽  
H.M. Macdonald ◽  
H.R. Buie ◽  
D.A. Hanley ◽  
S.K. Boyd

2021 ◽  
Author(s):  
Xiaojun Song ◽  
Tiandi Fan ◽  
Jundong Zeng ◽  
QinZhen Shi ◽  
Qiong Huang ◽  
...  

Abstract Ultrasonic guided waves (UGW), which propagate throughout the whole thickness of cortical bone, are attractive in the early diagnosis of osteoporosis. However, it is challenging due to the impact of soft tissue and the inherent difficulties related to the multiparametric inversion of cortical bone quality factors, such as cortical thickness and bulk wave velocities. Therefore, an UGW based multiple-parameter inversion algorithm is developed to predict strength-related factors in this research. In simulation, a free plate (cortical bone) and a bilayer plate (soft tissue and cortical bone) are used to validate the proposed method. The inverted cortical thickness (CTh), longitudinal velocity (V L ) and transverse velocity (V T ) are in accordance with the true value. Then four bovine cortical bone plates are used in the in vitro experiments. Compared with the reference values, the relative errors for cortical thicknesses are 3.96%, 0.83%, 2.87% and 4.25% respectively. In the in vivo measurements, ultrasonic guided waves are collected from ten volunteers’ tibia. The theoretical dispersion curves depicted by the estimated parameters (V T , V L , CTh) match well with the extracted experimental ones. In comparison to the dual-energy x-ray absorptiometry (DXA), the results show that the estimated transverse velocity and cortical thickness are highly sensitive to the osteoporosis. Therefore, these two parameters (CTh and V T ) of long bones have potential to diagnose bone status in clinical applications.


2020 ◽  
Vol 18 (1) ◽  
pp. 13-22
Author(s):  
Lyn Bowman ◽  
Anne B. Loucks

Sign in / Sign up

Export Citation Format

Share Document