Technique and preliminary findings for in vivo quantification of brain motion during injurious head impacts

2019 ◽  
Vol 95 ◽  
pp. 109279 ◽  
Author(s):  
T. Whyte ◽  
J. Liu ◽  
V. Chung ◽  
S.A. McErlane ◽  
Z.A. Abebe ◽  
...  
Keyword(s):  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jonathan D. Cherry ◽  
Camille D. Esnault ◽  
Zachary H. Baucom ◽  
Yorghos Tripodis ◽  
Bertrand R. Huber ◽  
...  

AbstractChronic traumatic encephalopathy (CTE) is a progressive neurodegenerative disease, characterized by hyperphosphorylated tau, found in individuals with a history of exposure to repetitive head impacts. While the neuropathologic hallmark of CTE is found in the cortex, hippocampal tau has proven to be an important neuropathologic feature to examine the extent of disease severity. However, the hippocampus is also heavily affected in many other tauopathies, such as Alzheimer’s disease (AD). How CTE and AD differentially affect the hippocampus is unclear. Using immunofluorescent analysis, a detailed histologic characterization of 3R and 4R tau isoforms and their differential accumulation in the temporal cortex in CTE and AD was performed. CTE and AD were both observed to contain mixed 3R and 4R tau isoforms, with 4R predominating in mild disease and 3R increasing proportionally as pathological severity increased. CTE demonstrated high levels of tau in hippocampal subfields CA2 and CA3 compared to CA1. There were also low levels of tau in the subiculum compared to CA1 in CTE. In contrast, AD had higher levels of tau in CA1 and subiculum compared to CA2/3. Direct comparison of the tau burden between AD and CTE demonstrated that CTE had higher tau densities in CA4 and CA2/3, while AD had elevated tau in the subiculum. Amyloid beta pathology did not contribute to tau isoform levels. Finally, it was demonstrated that higher levels of 3R tau correlated to more severe extracellular tau (ghost tangles) pathology. These findings suggest that mixed 3R/4R tauopathies begin as 4R predominant then transition to 3R predominant as pathological severity increases and ghost tangles develop. Overall, this work demonstrates that the relative deposition of tau isoforms among hippocampal subfields can aid in differential diagnosis of AD and CTE, and might help improve specificity of biomarkers for in vivo diagnosis.


2018 ◽  
Vol 80 (6) ◽  
pp. 2573-2585 ◽  
Author(s):  
Ziying Yin ◽  
Yi Sui ◽  
Joshua D. Trzasko ◽  
Phillip J. Rossman ◽  
Armando Manduca ◽  
...  

2018 ◽  
Vol 34 (4) ◽  
pp. 320-326 ◽  
Author(s):  
Abigail M. Tyson ◽  
Stefan M. Duma ◽  
Steven Rowson

Advances in low-cost wearable head impact sensor technology provide potential benefits regarding sports safety for both consumers and researchers. However, previous laboratory evaluations are not directly comparable and do not incorporate test conditions representative of unhelmeted impacts. This study addresses those limitations. The xPatch by X2 Biosystems and the SIM-G by Triax Technologies were placed on a National Operating Committee on Standards for Athletic Equipment (NOCSAE) headform with a Hybrid III neck which underwent impact tests using a pendulum. Impact conditions included helmeted, padded impactor to bare head, and rigid impactor to bare head to represent long- and short-duration impacts seen in helmeted and unhelmeted sports. The wearable sensors were evaluated on their kinematic accuracy by comparing results to reference sensors located at the headform center of gravity. Statistical tests for equivalence were performed on the slope of the linear regression between wearable sensors and reference. The xPatch gave equivalent measurements to the reference in select longer-duration impacts, whereas the SIM-G had large variance leading to no equivalence. For the short-duration impacts, both wearable sensors underpredicted the reference. This error can be improved with increases in sampling rate from 1 to 1.5 kHz. Follow-up evaluations should be performed on the field to identify error in vivo.


Author(s):  
Shahab Baghaei ◽  
Ali Sadegh ◽  
Mohamad Rajaai

The relative motion between the brain and skull and an increase in contact and shear stresses in the meningeal region could cause traumatic closed head injuries due to vehicular collisions, sport accidents and falls. There are many finite element studies of the brain/head models, but limited analytical models. The goal of this paper is to mathematically model subarachnoid space and the meningeal layers and to investigate the motion of the brain relative to the skull during blunt head impacts. The model consists of an elastic spherical shell representing the skull containing a visco-elastic solid material as the brain and a visco-elastic interface, which models the meningeal layers between the brain and the skull. In this study, the shell (the head) is moved toward a barrier and comes in contact with the barrier. Consequently, the skull deforms elastically and the brain is excited to come in contact with the skull. The viscoelastic characteristics of the interface (consisting of springs and dampers) are determined using experimental results of Hardy et al. [5]. Hertzian contact theory and Newtonian method are employed to acquire time dependant equations for the problem. The governing nonlinear integro-differential equations are formed and are solved using 4th order Runge Kutta method and elastic deformation of spherical shell, brain motion during the impact, and contact conditions between the brain and the skull are evaluated. Furthermore, some important mechanical parameters such as acceleration, impact force, and the impact time duration are also specified. The results of the analytical method are validated by performing an explicit finite element analysis. Acceptable agreement between these two methods is observed. The results of the analytical investigation give the contact threshold of the skull/brain, and represent the relevant velocity of this event. Furthermore, the impact analysis in different velocities is performed in order to compare the transmitted forces and the impact durations in different cases. It is concluded that the proposed mathematical model can predict head impacts in accidents and is capable in determining the relative brain motion of the skull and the brain. The mathematical model could be employed by other investigators to parametrically study the traumatic closed head injuries and hence to propose new head injury criteria.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
Joseph T. Gwin ◽  
Jeffery J. Chu ◽  
Solomon G. Diamond ◽  
P. David Halstead ◽  
Joseph J. Crisco ◽  
...  

The performance characteristics of football helmets are currently evaluated by simulating head impacts in the laboratory using a linear drop test method. To encourage development of helmets designed to protect against concussion, the National Operating Committee for Standards in Athletic Equipment recently proposed a new headgear testing methodology with the goal of more closely simulating in vivo head impacts. This proposed test methodology involves an impactor striking a helmeted headform, which is attached to a nonrigid neck. The purpose of the present study was to compare headform accelerations recorded according to the current (n=30) and proposed (n=54) laboratory test methodologies to head accelerations recorded in the field during play. In-helmet systems of six single-axis accelerometers were worn by the Dartmouth College men’s football team during the 2005 and 2006 seasons (n=20,733 impacts; 40 players). The impulse response characteristics of a subset of laboratory test impacts (n=27) were compared with the impulse response characteristics of a matched sample of in vivo head accelerations (n=24). Second- and third-order underdamped, conventional, continuous-time process models were developed for each impact. These models were used to characterize the linear head/headform accelerations for each impact based on frequency domain parameters. Headform linear accelerations generated according to the proposed test method were less similar to in vivo head accelerations than headform accelerations generated by the current linear drop test method. The nonrigid neck currently utilized was not developed to simulate sport-related direct head impacts and appears to be a source of the discrepancy between frequency characteristics of in vivo and laboratory head/headform accelerations. In vivo impacts occurred 37% more frequently on helmet regions, which are tested in the proposed standard than on helmet regions tested currently. This increase was largely due to the addition of the facemask test location. For the proposed standard, impactor velocities as high as 10.5 m/s were needed to simulate the highest energy impacts recorded in vivo. The knowledge gained from this study may provide the basis for improving sports headgear test apparatuses with regard to mimicking in vivo linear head accelerations. Specifically, increasing the stiffness of the neck is recommended. In addition, this study may provide a basis for selecting appropriate test impact energies for the standard performance specification to accompany the proposed standard linear impactor test method.


1976 ◽  
Vol 43 (3) ◽  
pp. 469-474
Author(s):  
Y. King Liu ◽  
K. B. Chandran

An experiment was performed to determine the container acceleration and pressure distribution in a Plexiglass cylinder, filled either with water or 3 percent set-gelatin, and impacted against a wall. This experiment serves to quantitatively validate a theoretical model simulating an one-dimensional closed-head impact given earlier. The experiments showed important differences between the theoretical and experimental pressure measurements. When the medium contained within the cylinder was water the coup pressure as found by experiment, was higher than the mathematical model prediction while the contrecoup pressure was in good agreement. When the container was filled with a set gel, the coup pressure was in agreement with the mathematical model but the contrecoup pressure is considerably lower than the calculated result. Since the brain is neither water nor gel, in vivo animal experiments are needed to obtain meaningful tolerance limits for injury due to cavitation at the contrecoup region in closed-head impacts.


Neurosurgery ◽  
2007 ◽  
Vol 60 (3) ◽  
pp. 490-496 ◽  
Author(s):  
Brock Schnebel ◽  
Joseph T. Gwin ◽  
Scott Anderson ◽  
Ron Gatlin
Keyword(s):  

2015 ◽  
Vol 12 (108) ◽  
pp. 20150331 ◽  
Author(s):  
Kaveh Laksari ◽  
Lyndia C. Wu ◽  
Mehmet Kurt ◽  
Calvin Kuo ◽  
David C. Camarillo

Although safety standards have reduced fatal head trauma due to single severe head impacts, mild trauma from repeated head exposures may carry risks of long-term chronic changes in the brain's function and structure. To study the physical sensitivities of the brain to mild head impacts, we developed the first dynamic model of the skull–brain based on in vivo MRI data. We showed that the motion of the brain can be described by a rigid-body with constrained kinematics. We further demonstrated that skull–brain dynamics can be approximated by an under-damped system with a low-frequency resonance at around 15 Hz. Furthermore, from our previous field measurements, we found that head motions in a variety of activities, including contact sports, show a primary frequency of less than 20 Hz. This implies that typical head exposures may drive the brain dangerously close to its mechanical resonance and lead to amplified brain–skull relative motions. Our results suggest a possible cause for mild brain trauma, which could occur due to repetitive low-acceleration head oscillations in a variety of recreational and occupational activities.


Sign in / Sign up

Export Citation Format

Share Document