scholarly journals Accuracy of the tibiofemoral contact forces estimated by a subject-specific musculoskeletal model with fluoroscopy-based contact point trajectories

2020 ◽  
Vol 113 ◽  
pp. 110117
Author(s):  
Raphael Dumas ◽  
Florent Moissenet
2014 ◽  
Vol 136 (2) ◽  
Author(s):  
Trent M. Guess ◽  
Antonis P. Stylianou ◽  
Mohammad Kia

Detailed knowledge of knee kinematics and dynamic loading is essential for improving the design and outcomes of surgical procedures, tissue engineering applications, prosthetics design, and rehabilitation. This study used publicly available data provided by the “Grand Challenge Competition to Predict in-vivo Knee Loads” for the 2013 American Society of Mechanical Engineers Summer Bioengineering Conference (Fregly et al., 2012, “Grand Challenge Competition to Predict in vivo Knee Loads,” J. Orthop. Res., 30, pp. 503–513) to develop a full body, musculoskeletal model with subject specific right leg geometries that can concurrently predict muscle forces, ligament forces, and knee and ground contact forces. The model includes representation of foot/floor interactions and predicted tibiofemoral joint loads were compared to measured tibial loads for two different cycles of treadmill gait. The model used anthropometric data (height and weight) to scale the joint center locations and mass properties of a generic model and then used subject bone geometries to more accurately position the hip and ankle. The musculoskeletal model included 44 muscles on the right leg, and subject specific geometries were used to create a 12 degrees-of-freedom anatomical right knee that included both patellofemoral and tibiofemoral articulations. Tibiofemoral motion was constrained by deformable contacts defined between the tibial insert and femoral component geometries and by ligaments. Patellofemoral motion was constrained by contact between the patellar button and femoral component geometries and the patellar tendon. Shoe geometries were added to the feet, and shoe motion was constrained by contact between three shoe segments per foot and the treadmill surface. Six-axis springs constrained motion between the feet and shoe segments. Experimental motion capture data provided input to an inverse kinematics stage, and the final forward dynamics simulations tracked joint angle errors for the left leg and upper body and tracked muscle length errors for the right leg. The one cycle RMS errors between the predicted and measured tibia contact were 178 N and 168 N for the medial and lateral sides for the first gait cycle and 209 N and 228 N for the medial and lateral sides for the faster second gait cycle. One cycle RMS errors between predicted and measured ground reaction forces were 12 N, 13 N, and 65 N in the anterior-posterior, medial-lateral, and vertical directions for the first gait cycle and 43 N, 15 N, and 96 N in the anterior-posterior, medial-lateral, and vertical directions for the second gait cycle.


2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Swithin S. Razu ◽  
Trent M. Guess

Computational models that predict in vivo joint loading and muscle forces can potentially enhance and augment our knowledge of both typical and pathological gaits. To adopt such models into clinical applications, studies validating modeling predictions are essential. This study created a full-body musculoskeletal model using data from the “Sixth Grand Challenge Competition to Predict in vivo Knee Loads.” This model incorporates subject-specific geometries of the right leg in order to concurrently predict knee contact forces, ligament forces, muscle forces, and ground contact forces. The objectives of this paper are twofold: (1) to describe an electromyography (EMG)-driven modeling methodology to predict knee contact forces and (2) to validate model predictions by evaluating the model predictions against known values for a patient with an instrumented total knee replacement (TKR) for three distinctly different gait styles (normal, smooth, and bouncy gaits). The model integrates a subject-specific knee model onto a previously validated generic full-body musculoskeletal model. The combined model included six degrees-of-freedom (6DOF) patellofemoral and tibiofemoral joints, ligament forces, and deformable contact forces with viscous damping. The foot/shoe/floor interactions were modeled by incorporating shoe geometries to the feet. Contact between shoe segments and the floor surface was used to constrain the shoe segments. A novel EMG-driven feedforward with feedback trim motor control strategy was used to concurrently estimate muscle forces and knee contact forces from standard motion capture data collected on the individual subject. The predicted medial, lateral, and total tibiofemoral forces represented the overall measured magnitude and temporal patterns with good root-mean-squared errors (RMSEs) and Pearson's correlation (p2). The model accuracy was high: medial, lateral, and total tibiofemoral contact force RMSEs = 0.15, 0.14, 0.21 body weight (BW), and (0.92 < p2 < 0.96) for normal gait; RMSEs = 0.18 BW, 0.21 BW, 0.29 BW, and (0.81 < p2 < 0.93) for smooth gait; and RMSEs = 0.21 BW, 0.22 BW, 0.33 BW, and (0.86 < p2 < 0.95) for bouncy gait, respectively. Overall, the model captured the general shape, magnitude, and temporal patterns of the contact force profiles accurately. Potential applications of this proposed model include predictive biomechanics simulations, design of TKR components, soft tissue balancing, and surgical simulation.


2019 ◽  
Author(s):  
◽  
Swithin Samuel Razu

"The goal of this dissertation is to develop a musculoskeletal model and corroborate model predictions to experimentally measured in vivo knee contact forces, in order to study the biomechanical consequences of two different total knee arthroplasty designs. The two main contributions of this dissertation are: (1) Corroboration to experimental data: The development of an EMG-driven, full-body, musculoskeletal model with subject-specific leg geometries including deformable contacts, ligaments, 6DOF knee joint, and a shoe-floor model that can concurrently predict muscle forces, ligament forces, and joint contact forces. Model predictions of tibiofemoral joint contact forces were evaluated against the subject-specific in vivo measurements from the instrumented TKR for three distinctly different styles of over ground gait. (2) Virtual surgery in TKA: The musculoskeletal modeling methodology was then used to develop a model for one healthy participant with a native knee and then virtually replacing the native knee with fixed-bearing and mobile-bearing total knee arthroplasty designs performing gait and step-up tasks. This approach minimized the biomechanical impact of variations in sex, geometry, implant size, design and positioning, ligament location and tension, and muscle forces found across patients. The differences in biomechanics were compared for the two designs. 1.2 Significance of this Research The world health organization ranks musculoskeletal disorders as the second largest contributor to disability worldwide. Conservative estimates put the national cost of direct care for musculoskeletal disease at $212.7 billion a year [1]. Many people who suffer from neuromuscular or musculoskeletal diseases may benefit from the insights gained from surgery simulations, since musculoskeletal reconstructions are commonly performed on these individuals. Improved surgical outcomes will benefit these individuals not only in the short-term, but also in the long-term, since their future rehabilitation needs may be reduced. For example, although total knee arthroplasty is a common surgical procedure for the treatment of osteoarthritis with over 700,000 procedures performed each year [2], many patients are unhappy with the ultimate results [3]. Ten to 30% of patients report [4] pain, dissatisfaction with function, and the need for further surgery such as revision after the initial surgery resulting in costs exceeding $11 billion [5]. Potentially, simulation studies that quantify the important biomechanical variables will reduce the need for revision surgeries in patients."--Introduction.


Author(s):  
Mate Antali ◽  
Gabor Stepan

AbstractIn this paper, the general kinematics and dynamics of a rigid body is analysed, which is in contact with two rigid surfaces in the presence of dry friction. Due to the rolling or slipping state at each contact point, four kinematic scenarios occur. In the two-point rolling case, the contact forces are undetermined; consequently, the condition of the static friction forces cannot be checked from the Coulomb model to decide whether two-point rolling is possible. However, this issue can be resolved within the scope of rigid body dynamics by analysing the nonsmooth vector field of the system at the possible transitions between slipping and rolling. Based on the concept of limit directions of codimension-2 discontinuities, a method is presented to determine the conditions when the two-point rolling is realizable without slipping.


2021 ◽  
Author(s):  
Takatoshi Hondo ◽  
Takayuki Tanaka ◽  
Shoya Kuniyuki ◽  
Mitsugi Suzuki

Abstract It is crucial to grasp wheel-rail contact forces in the evaluation of running safety and curving performance of railway vehicles. To measure the wheel-rail contact forces, instrumented wheelset, which has the strain gauges on the wheel surface, is widely used. The purpose of this research is to increase the measurement accuracy of the wheel-rail contact forces by understanding the detailed characteristics of the instrumented wheelset. Although the various researches on the instrumented wheelset have been carried out to increase the measurement accuracy of wheel-rail contact forces, there are few works considering the longitudinal force and the lateral shift of the wheel-rail contact point. However, sometimes the longitudinal force has a non-negligible influence on the measurement accuracy on the instrumented wheelset. In this paper, the authors clarify the cross-sensitivity characteristics of the instrumented wheelset when the longitudinal force is applied to the various lateral position on the wheel tread through the FEM analysis and the static load test. The authors also propose a method to approximate the cross-sensitivity as an analytical function of the lateral and circumferential contact positions.


Sign in / Sign up

Export Citation Format

Share Document