scholarly journals Concurrent Prediction of Muscle and Tibiofemoral Contact Forces During Treadmill Gait

2014 ◽  
Vol 136 (2) ◽  
Author(s):  
Trent M. Guess ◽  
Antonis P. Stylianou ◽  
Mohammad Kia

Detailed knowledge of knee kinematics and dynamic loading is essential for improving the design and outcomes of surgical procedures, tissue engineering applications, prosthetics design, and rehabilitation. This study used publicly available data provided by the “Grand Challenge Competition to Predict in-vivo Knee Loads” for the 2013 American Society of Mechanical Engineers Summer Bioengineering Conference (Fregly et al., 2012, “Grand Challenge Competition to Predict in vivo Knee Loads,” J. Orthop. Res., 30, pp. 503–513) to develop a full body, musculoskeletal model with subject specific right leg geometries that can concurrently predict muscle forces, ligament forces, and knee and ground contact forces. The model includes representation of foot/floor interactions and predicted tibiofemoral joint loads were compared to measured tibial loads for two different cycles of treadmill gait. The model used anthropometric data (height and weight) to scale the joint center locations and mass properties of a generic model and then used subject bone geometries to more accurately position the hip and ankle. The musculoskeletal model included 44 muscles on the right leg, and subject specific geometries were used to create a 12 degrees-of-freedom anatomical right knee that included both patellofemoral and tibiofemoral articulations. Tibiofemoral motion was constrained by deformable contacts defined between the tibial insert and femoral component geometries and by ligaments. Patellofemoral motion was constrained by contact between the patellar button and femoral component geometries and the patellar tendon. Shoe geometries were added to the feet, and shoe motion was constrained by contact between three shoe segments per foot and the treadmill surface. Six-axis springs constrained motion between the feet and shoe segments. Experimental motion capture data provided input to an inverse kinematics stage, and the final forward dynamics simulations tracked joint angle errors for the left leg and upper body and tracked muscle length errors for the right leg. The one cycle RMS errors between the predicted and measured tibia contact were 178 N and 168 N for the medial and lateral sides for the first gait cycle and 209 N and 228 N for the medial and lateral sides for the faster second gait cycle. One cycle RMS errors between predicted and measured ground reaction forces were 12 N, 13 N, and 65 N in the anterior-posterior, medial-lateral, and vertical directions for the first gait cycle and 43 N, 15 N, and 96 N in the anterior-posterior, medial-lateral, and vertical directions for the second gait cycle.

2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Marco A. Marra ◽  
Valentine Vanheule ◽  
René Fluit ◽  
Bart H. F. J. M. Koopman ◽  
John Rasmussen ◽  
...  

Musculoskeletal (MS) models should be able to integrate patient-specific MS architecture and undergo thorough validation prior to their introduction into clinical practice. We present a methodology to develop subject-specific models able to simultaneously predict muscle, ligament, and knee joint contact forces along with secondary knee kinematics. The MS architecture of a generic cadaver-based model was scaled using an advanced morphing technique to the subject-specific morphology of a patient implanted with an instrumented total knee arthroplasty (TKA) available in the fifth “grand challenge competition to predict in vivo knee loads” dataset. We implemented two separate knee models, one employing traditional hinge constraints, which was solved using an inverse dynamics technique, and another one using an 11-degree-of-freedom (DOF) representation of the tibiofemoral (TF) and patellofemoral (PF) joints, which was solved using a combined inverse dynamic and quasi-static analysis, called force-dependent kinematics (FDK). TF joint forces for one gait and one right-turn trial and secondary knee kinematics for one unloaded leg-swing trial were predicted and evaluated using experimental data available in the grand challenge dataset. Total compressive TF contact forces were predicted by both hinge and FDK knee models with a root-mean-square error (RMSE) and a coefficient of determination (R2) smaller than 0.3 body weight (BW) and equal to 0.9 in the gait trial simulation and smaller than 0.4 BW and larger than 0.8 in the right-turn trial simulation, respectively. Total, medial, and lateral TF joint contact force predictions were highly similar, regardless of the type of knee model used. Medial (respectively lateral) TF forces were over- (respectively, under-) predicted with a magnitude error of M < 0.2 (respectively > −0.4) in the gait trial, and under- (respectively, over-) predicted with a magnitude error of M > −0.4 (respectively < 0.3) in the right-turn trial. Secondary knee kinematics from the unloaded leg-swing trial were overall better approximated using the FDK model (average Sprague and Geers' combined error C = 0.06) than when using a hinged knee model (C = 0.34). The proposed modeling approach allows detailed subject-specific scaling and personalization and does not contain any nonphysiological parameters. This modeling framework has potential applications in aiding the clinical decision-making in orthopedics procedures and as a tool for virtual implant design.


2020 ◽  
Vol 36 (6) ◽  
pp. 444-456
Author(s):  
David C. Kingston ◽  
Stacey M. Acker

A musculoskeletal model of the right lower limb was developed to estimate 3D tibial contact forces in high knee flexion postures. This model determined the effect of intersegmental contact between thigh–calf and heel–gluteal structures on tibial contact forces. This model includes direct tracking and 3D orientation of intersegmental contact force, femoral translations from in vivo studies, wrapping of knee extensor musculature, and a novel optimization constraint for multielement muscle groups. Model verification consisted of calculating the error between estimated tibial compressive forces and direct measurements from the Grand Knee Challenge during movements to ∼120° of knee flexion as no high knee flexion data are available. Tibial compression estimates strongly fit implant data during walking (R2 = .83) and squatting (R2 = .93) with a root mean squared difference of .47 and .16 body weight, respectively. Incorporating intersegmental contact significantly reduced model estimates of peak tibial anterior–posterior shear and increased peak medial–lateral shear during the static phase of high knee flexion movements by an average of .33 and .07 body weight, respectively. This model supports prior work in that intersegmental contact is a critical parameter when estimating tibial contact forces in high knee flexion movements across a range of culturally and occupationally relevant postures.


2016 ◽  
Vol 138 (2) ◽  
Author(s):  
Yihwan Jung ◽  
Cong-Bo Phan ◽  
Seungbum Koo

Joint contact forces measured with instrumented knee implants have not only revealed general patterns of joint loading but also showed individual variations that could be due to differences in anatomy and joint kinematics. Musculoskeletal human models for dynamic simulation have been utilized to understand body kinetics including joint moments, muscle tension, and knee contact forces. The objectives of this study were to develop a knee contact model which can predict knee contact forces using an inverse dynamics-based optimization solver and to investigate the effect of joint constraints on knee contact force prediction. A knee contact model was developed to include 32 reaction force elements on the surface of a tibial insert of a total knee replacement (TKR), which was embedded in a full-body musculoskeletal model. Various external measurements including motion data and external force data during walking trials of a subject with an instrumented knee implant were provided from the Sixth Grand Challenge Competition to Predict in vivo Knee Loads. Knee contact forces in the medial and lateral portions of the instrumented knee implant were also provided for the same walking trials. A knee contact model with a hinge joint and normal alignment could predict knee contact forces with root mean square errors (RMSEs) of 165 N and 288 N for the medial and lateral portions of the knee, respectively, and coefficients of determination (R2) of 0.70 and −0.63. When the degrees-of-freedom (DOF) of the knee and locations of leg markers were adjusted to account for the valgus lower-limb alignment of the subject, RMSE values improved to 144 N and 179 N, and R2 values improved to 0.77 and 0.37, respectively. The proposed knee contact model with subject-specific joint model could predict in vivo knee contact forces with reasonable accuracy. This model may contribute to the development and improvement of knee arthroplasty.


2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Swithin S. Razu ◽  
Trent M. Guess

Computational models that predict in vivo joint loading and muscle forces can potentially enhance and augment our knowledge of both typical and pathological gaits. To adopt such models into clinical applications, studies validating modeling predictions are essential. This study created a full-body musculoskeletal model using data from the “Sixth Grand Challenge Competition to Predict in vivo Knee Loads.” This model incorporates subject-specific geometries of the right leg in order to concurrently predict knee contact forces, ligament forces, muscle forces, and ground contact forces. The objectives of this paper are twofold: (1) to describe an electromyography (EMG)-driven modeling methodology to predict knee contact forces and (2) to validate model predictions by evaluating the model predictions against known values for a patient with an instrumented total knee replacement (TKR) for three distinctly different gait styles (normal, smooth, and bouncy gaits). The model integrates a subject-specific knee model onto a previously validated generic full-body musculoskeletal model. The combined model included six degrees-of-freedom (6DOF) patellofemoral and tibiofemoral joints, ligament forces, and deformable contact forces with viscous damping. The foot/shoe/floor interactions were modeled by incorporating shoe geometries to the feet. Contact between shoe segments and the floor surface was used to constrain the shoe segments. A novel EMG-driven feedforward with feedback trim motor control strategy was used to concurrently estimate muscle forces and knee contact forces from standard motion capture data collected on the individual subject. The predicted medial, lateral, and total tibiofemoral forces represented the overall measured magnitude and temporal patterns with good root-mean-squared errors (RMSEs) and Pearson's correlation (p2). The model accuracy was high: medial, lateral, and total tibiofemoral contact force RMSEs = 0.15, 0.14, 0.21 body weight (BW), and (0.92 < p2 < 0.96) for normal gait; RMSEs = 0.18 BW, 0.21 BW, 0.29 BW, and (0.81 < p2 < 0.93) for smooth gait; and RMSEs = 0.21 BW, 0.22 BW, 0.33 BW, and (0.86 < p2 < 0.95) for bouncy gait, respectively. Overall, the model captured the general shape, magnitude, and temporal patterns of the contact force profiles accurately. Potential applications of this proposed model include predictive biomechanics simulations, design of TKR components, soft tissue balancing, and surgical simulation.


2019 ◽  
Author(s):  
◽  
Swithin Samuel Razu

"The goal of this dissertation is to develop a musculoskeletal model and corroborate model predictions to experimentally measured in vivo knee contact forces, in order to study the biomechanical consequences of two different total knee arthroplasty designs. The two main contributions of this dissertation are: (1) Corroboration to experimental data: The development of an EMG-driven, full-body, musculoskeletal model with subject-specific leg geometries including deformable contacts, ligaments, 6DOF knee joint, and a shoe-floor model that can concurrently predict muscle forces, ligament forces, and joint contact forces. Model predictions of tibiofemoral joint contact forces were evaluated against the subject-specific in vivo measurements from the instrumented TKR for three distinctly different styles of over ground gait. (2) Virtual surgery in TKA: The musculoskeletal modeling methodology was then used to develop a model for one healthy participant with a native knee and then virtually replacing the native knee with fixed-bearing and mobile-bearing total knee arthroplasty designs performing gait and step-up tasks. This approach minimized the biomechanical impact of variations in sex, geometry, implant size, design and positioning, ligament location and tension, and muscle forces found across patients. The differences in biomechanics were compared for the two designs. 1.2 Significance of this Research The world health organization ranks musculoskeletal disorders as the second largest contributor to disability worldwide. Conservative estimates put the national cost of direct care for musculoskeletal disease at $212.7 billion a year [1]. Many people who suffer from neuromuscular or musculoskeletal diseases may benefit from the insights gained from surgery simulations, since musculoskeletal reconstructions are commonly performed on these individuals. Improved surgical outcomes will benefit these individuals not only in the short-term, but also in the long-term, since their future rehabilitation needs may be reduced. For example, although total knee arthroplasty is a common surgical procedure for the treatment of osteoarthritis with over 700,000 procedures performed each year [2], many patients are unhappy with the ultimate results [3]. Ten to 30% of patients report [4] pain, dissatisfaction with function, and the need for further surgery such as revision after the initial surgery resulting in costs exceeding $11 billion [5]. Potentially, simulation studies that quantify the important biomechanical variables will reduce the need for revision surgeries in patients."--Introduction.


2016 ◽  
Vol 138 (2) ◽  
Author(s):  
Florent Moissenet ◽  
Laurence Chèze ◽  
Raphaël Dumas

While recent literature has clearly demonstrated that an extensive personalization of the musculoskeletal models was necessary to reach high accuracy, several components of the generic models may be further investigated before defining subject-specific parameters. Among others, the choice in muscular geometry and thus the level of muscular redundancy in the model may have a noticeable influence on the predicted musculotendon and joint contact forces. In this context, the aim of this study was to investigate if the level of muscular redundancy can contribute or not to reduce inaccuracies in tibiofemoral contact forces predictions. For that, the dataset disseminated through the Sixth Grand Challenge Competition to Predict In Vivo Knee Loads was applied to a versatile 3D lower limb musculoskeletal model in which two muscular geometries (i.e., two different levels of muscular redundancy) were implemented. This dataset provides tibiofemoral implant measurements for both medial and lateral compartments and thus allows evaluation of the validity of the model predictions. The results suggest that an increase of the level of muscular redundancy corresponds to a better accuracy of total tibiofemoral contact force whatever the gait pattern investigated. However, the medial and lateral contact forces ratio and accuracy were not necessarily improved when increasing the level of muscular redundancy and may thus be attributed to other parameters such as the location of contact points. To conclude, the muscular geometry, among other components of the generic model, has a noticeable impact on joint contact forces predictions and may thus be correctly chosen even before trying to personalize the model.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Allison L. Kinney ◽  
Thor F. Besier ◽  
Darryl D. D'Lima ◽  
Benjamin J. Fregly

Validation is critical if clinicians are to use musculoskeletal models to optimize treatment of individual patients with a variety of musculoskeletal disorders. This paper provides an update on the annual Grand Challenge Competition to Predict in Vivo Knee Loads, a unique opportunity for direct validation of knee contact forces and indirect validation of knee muscle forces predicted by musculoskeletal models. Three competitions (2010, 2011, and 2012) have been held at the annual American Society of Mechanical Engineers Summer Bioengineering Conference, and two more competitions are planned for the 2013 and 2014 conferences. Each year of the competition, a comprehensive data set collected from a single subject implanted with a force-measuring knee replacement is released. Competitors predict medial and lateral knee contact forces for two gait trials without knowledge of the experimental knee contact force measurements. Predictions are evaluated by calculating root-mean-square (RMS) errors and R2 values relative to the experimentally measured medial and lateral contact forces. For the first three years of the competition, competitors used a variety of methods to predict knee contact and muscle forces, including static and dynamic optimization, EMG-driven models, and parametric numerical models. Overall, errors in predicted contact forces were comparable across years, with average RMS errors for the four competition winners ranging from 229 N to 312 N for medial contact force and from 238 N to 326 N for lateral contact force. Competitors generally predicted variations in medial contact force (highest R2 = 0.91) better than variations in lateral contact force (highest R2 = 0.70). Thus, significant room for improvement exists in the remaining two competitions. The entire musculoskeletal modeling community is encouraged to use the competition data and models for their own model validation efforts.


2020 ◽  
Vol 142 (6) ◽  
Author(s):  
David Leandro Dejtiar ◽  
Christine Mary Dzialo ◽  
Peter Heide Pedersen ◽  
Kenneth Krogh Jensen ◽  
Martin Kokholm Fleron ◽  
...  

Abstract Musculoskeletal (MS) models can be used to study the muscle, ligament, and joint mechanics of natural knees. However, models that both capture subject-specific geometry and contain a detailed joint model do not currently exist. This study aims to first develop magnetic resonance image (MRI)-based subject-specific models with a detailed natural knee joint capable of simultaneously estimating in vivo ligament, muscle, tibiofemoral (TF), and patellofemoral (PF) joint contact forces and secondary joint kinematics. Then, to evaluate the models, the predicted secondary joint kinematics were compared to in vivo joint kinematics extracted from biplanar X-ray images (acquired using slot scanning technology) during a quasi-static lunge. To construct the models, bone, ligament, and cartilage structures were segmented from MRI scans of four subjects. The models were then used to simulate lunges based on motion capture and force place data. Accurate estimates of TF secondary joint kinematics and PF translations were found: translations were predicted with a mean difference (MD) and standard error (SE) of 2.13 ± 0.22 mm between all trials and measures, while rotations had a MD ± SE of 8.57 ± 0.63 deg. Ligament and contact forces were also reported. The presented modeling workflow and the resulting knee joint model have potential to aid in the understanding of subject-specific biomechanics and simulating the effects of surgical treatment and/or external devices on functional knee mechanics on an individual level.


2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Ifaz T. Haider ◽  
Michael Baggaley ◽  
W. Brent Edwards

Abstract Understanding the structural response of bone during locomotion may help understand the etiology of stress fracture. This can be done in a subject-specific manner using finite element (FE) modeling, but care is needed to ensure that modeling assumptions reflect the in vivo environment. Here, we explored the influence of loading and boundary conditions (BC), and compared predictions to previous in vivo measurements. Data were collected from a female participant who walked/ran on an instrumented treadmill while motion data were captured. Inverse dynamics of the leg (foot, shank, and thigh segments) was combined with a musculoskeletal (MSK) model to estimate muscle and joint contact forces. These forces were applied to an FE model of the tibia, generated from computed tomography (CT). Eight conditions varying loading/BCs were investigated. We found that modeling the fibula was necessary to predict realistic tibia bending. Applying joint moments from the MSK model to the FE model was also needed to predict torsional deformation. During walking, the most complex model predicted deformation of 0.5 deg posterior, 0.8 deg medial, and 1.4 deg internal rotation, comparable to in vivo measurements of 0.5–1 deg, 0.15–0.7 deg, and 0.75–2.2 deg, respectively. During running, predicted deformations of 0.3 deg posterior, 0.3 deg medial, and 0.5 deg internal rotation somewhat underestimated in vivo measures of 0.85–1.9 deg, 0.3–0.9 deg, 0.65–1.72 deg, respectively. Overall, these models may be sufficiently realistic to be used in future investigations of tibial stress fracture.


Sign in / Sign up

Export Citation Format

Share Document