Biomechanical characterization and constitutive modeling of the layer-dissected residual strains and mechanical properties of abdominal porcine aorta

2022 ◽  
pp. 110909
Author(s):  
Juan A. Peña ◽  
M. Cilla ◽  
Miguel A. Martínez ◽  
Estefanía Peña
2021 ◽  
Author(s):  
Sankalp Gour ◽  
Deepu Kumar Singh ◽  
Deepak Kumar ◽  
Vinod Yadav

Abstract The present study deals with the constitutive modeling for the mechanical behavior of rubber with filler particles. An analytical model is developed to predict the mechanical properties of rubber with added filler particles based on experimental observation. To develop the same, a continuum mechanics-based hyperelasticity theory is utilized. The model is validated with the experimental results of the chloroprene and nitrile butadiene rubbers filled with different volume fractions of carbon black and carbon nanoparticles, respectively. The findings of the model agree well with the experimental results. In general, the developed model will be helpful to the materialist community working in characterizing the material behavior of tires and other rubber-like materials.


1994 ◽  
Vol 67 (2) ◽  
pp. 359-365 ◽  
Author(s):  
P. G. Santangelo ◽  
C. M. Roland

Abstract It was found that at low residual strains, the modulus of double network rubbers can be less than that of an isotropic elastomer of equal crosslink density. At higher residual strains, the equilibrium modulus is higher for the double network. This aspect of the behavior of networks was investigated using two phenomenological descriptions of rubber elasticity, the Mooney-Rivlin (MR) and the Roth, Martin, and Stiehler (RMS) Equations. Calculations using either approach, which make use of the independent network hypothesis, were qualitatively in agreement with the experimental data. The tensile strength of double networks based on natural rubber were found to be independent of the amount of residual strain. This is true even at higher residual strains, wherein the modulus is significantly amplified. This suggests that the conventional compromise between modulus and failure properties can be circumvented using double network rubbers. Their utilization can yield elastomers of better mechanical properties.


Micromachines ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 801 ◽  
Author(s):  
Jaweb Ben Messaoud ◽  
Jean-François Michaud ◽  
Dominique Certon ◽  
Massimo Camarda ◽  
Nicolò Piluso ◽  
...  

The stress state is a crucial parameter for the design of innovative microelectromechanical systems based on silicon carbide (SiC) material. Hence, mechanical properties of such structures highly depend on the fabrication process. Despite significant progresses in thin-film growth and fabrication process, monitoring the strain of the suspended SiC thin-films is still challenging. However, 3C-SiC membranes on silicon (Si) substrates have been demonstrated, but due to the low quality of the SiC/Si heteroepitaxy, high levels of residual strains were always observed. In order to achieve promising self-standing films with low residual stress, an alternative micromachining technique based on electrochemical etching of high quality homoepitaxy 4H-SiC layers was evaluated. This work is dedicated to the determination of their mechanical properties and more specifically, to the characterization of a 4H-SiC freestanding film with a circular shape. An inverse problem method was implemented, where experimental results obtained from bulge test are fitted with theoretical static load-deflection curves of the stressed membrane. To assess data validity, the dynamic behavior of the membrane was also investigated: Experimentally, by means of laser Doppler vibrometry (LDV) and theoretically, by means of finite element computations. The two methods provided very similar results since one obtained a Young’s modulus of 410 GPa and a residual stress value of 41 MPa from bulge test against 400 GPa and 30 MPa for the LDV analysis. The determined Young’s modulus is in good agreement with literature values. Moreover, residual stress values demonstrate that the fabrication of low-stressed SiC films is achievable thanks to the micromachining process developed.


Author(s):  
Zhaonan Sun ◽  
Bronislaw D. Gepner ◽  
Sang-Hyun Lee ◽  
Joshua Rigby ◽  
Patrick S. Cottler ◽  
...  

2021 ◽  
Vol 264 ◽  
pp. 02010
Author(s):  
Abdubaki Kayumov ◽  
Rashidbek Hudaykulov ◽  
Dilfuza Makhmudova ◽  
Dilshod Kayumov

The constant development of the road network in Uzbekistan, especially in widespread saline soils, necessitates increased attention to road structure strength. Since vehicles differ in weight and speed, it is obvious that the saline soil under the pavement is subjected to successive impacts of a load of different power and application force. Experimental studies to identify the patterns of changes in saline soils' physical and mechanical properties under repeated and short-term loads were conducted on a device specially designed by the authors of this study. The experiments were conducted on samples of sulfate and chloride-sulfate medium-saline heavy silty sandy loam, compacted at optimal moisture content to maximum density. When conducting the experiment, the impact duration of vertical load Рver = 0.15 MPa on the sample was tload = 0.2 sec, and the interval between the loads was 0.5 sec, the frequency of application was f = 1.2 Hz. The number of short-term load applications was recorded using an electric meter installed on the device. After a certain number of short-term cyclic load applications on the sample, its physical and mechanical properties were determined following the requirements of state standards (GOST). The results of the study show that with an increase in the number of cyclic and short-term load impacts on the sample, the following values increase: residual strain, density, and modulus of setting, relative swelling, swelling pressure, ultrasonic transmission rate, coefficient of filtration; while the porosity, coefficient of porosity, soaking, ultimate strength in uniaxial compression, the coefficient of dynamic viscosity, adherence, the angle of internal friction and the modulus of elasticity of soil decrease. It was determined that under the repeated impact of short-term loads in compacted saline soil, residual strains and short-term redistribution of stresses in the contact of soil and salt particles occur, which leads to a change in the physical and mechanical properties of soil.


Sign in / Sign up

Export Citation Format

Share Document