Optimization and scale-up of a new bacterial bioprocess for lactic acid production

2016 ◽  
Vol 231 ◽  
pp. S7
Author(s):  
Anita Slavica ◽  
Renata Teparic ◽  
Bozidar Šantek ◽  
Srdjan Novak
2006 ◽  
Vol 101 (1) ◽  
pp. 9-12 ◽  
Author(s):  
Tiejun Liu ◽  
Shigenobu Miura ◽  
Masaaki Yaguchi ◽  
Tomohiro Arimura ◽  
Enock Y. Park ◽  
...  

Author(s):  
Maneesh Kumar Mediboyina ◽  
Nicholas M. Holden ◽  
Simon O’Neill ◽  
Kai Routledge ◽  
Bill Morrissey ◽  
...  

AbstractThis study focusses on the design and scale-up of industrial lactic acid production by fermentation of dairy cheese whey permeate based on standard methodological parameters. The aim was to address the shortcomings of standard scale-up methodologies and provide a framework for fermenter scale-up that enables the accurate estimation of energy consumption by suitable selection of turbine and speed for industrial deployment. Moreover, life cycle assessment (LCA) was carried out to identify the potential impacts and possibilities to reduce the operation associated emissions at an early stage. The findings showed that a 3000 times scale-up strategy assuming constant geometric dimensions and specific energy consumption (P/Vw) resulted in lower impeller speed and energy demand. The Rushton turbine blade (RTB) and LightninA315 four-blade hydrofoil (LA315) were found to have the highest and lowest torque output, respectively, at a similar P/Vw of 2.8 kWm−3, with agitation speeds of 1.33 and 2.5 s−1, respectively. RTB demonstrating lower shear damage towards cells (up to 1.33 s−1) was selected because it permits high torque, low-power and acceptable turbulence. The LCA results showed a strong relation between the number of impellers installed and associated emissions suggesting a trade-off between mixing performance and environmental impacts.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Beatriz Martines de Souza ◽  
Mayara Souza Silva ◽  
Aline Silva Braga ◽  
Patrícia Sanches Kerges Bueno ◽  
Paulo Sergio da Silva Santos ◽  
...  

AbstractThis in vitro study evaluated the protective effect of titanium tetrafluoride (TiF4) varnish and silver diamine fluoride (SDF) solution on the radiation-induced dentin caries. Bovine root dentin samples were irradiated (70 Gy) and treated as follows: (6 h): 4% TiF4 varnish; 5.42% NaF varnish; 30% SDF solution; placebo varnish; or untreated (negative control). Microcosm biofilm was produced from human dental biofilm (from patients with head-neck cancer) mixed with McBain saliva for the first 8 h. After 16 h and from day 2 to day 5, McBain saliva (0.2% sucrose) was replaced daily (37 °C, 5% CO2) (biological triplicate). Demineralization was quantified by transverse microradiography (TMR), while biofilm was analyzed by using viability, colony-forming units (CFU) counting and lactic acid production assays. The data were statistically analyzed by ANOVA (p < 0.05). TiF4 and SDF were able to reduce mineral loss compared to placebo and the negative control. TiF4 and SDF significantly reduced the biofilm viability compared to negative control. TiF4 significantly reduced the CFU count of total microorganism, while only SDF affected total streptococci and mutans streptococci counts. The varnishes induced a reduction in lactic acid production compared to the negative control. TiF4 and SDF may be good alternatives to control the development of radiation-induced dentin caries.


Heliyon ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. e07079
Author(s):  
Joel Romial Ngouénam ◽  
Chancel Hector Momo Kenfack ◽  
Edith Marius Foko Kouam ◽  
Pierre Marie Kaktcham ◽  
Rukesh Maharjan ◽  
...  

2021 ◽  
Author(s):  
Xinpeng Zhao ◽  
Zhimin Zhou ◽  
hu luo ◽  
Yanfei Zhang ◽  
Wang Liu ◽  
...  

Combined experiments and density functional theory (DFT) calculations provided insights into the role of the environment-friendly γ-valerolactone (GVL) as a solvent in the hydrothermal conversion of glucose into lactic acid...


Sign in / Sign up

Export Citation Format

Share Document