Dentistry increasingly integrates artificial intelligence (AI) to help improve the current state of clinical dental practice. However, this revolutionary technological field raises various complex ethical challenges. The objective of this systematic scoping review is to document the current uses of AI in dentistry and the ethical concerns or challenges they imply. Three health care databases (MEDLINE [PubMed], SciVerse Scopus, and Cochrane Library) and 2 computer science databases (ArXiv, IEEE Xplore) were searched. After identifying 1,553 records, the documents were filtered, and a full-text screening was performed. In total, 178 studies were retained and analyzed by 8 researchers specialized in dentistry, AI, and ethics. The team used Covidence for data extraction and Dedoose for the identification of ethics-related information. PRISMA guidelines were followed. Among the included studies, 130 (73.0%) studies were published after 2016, and 93 (52.2%) were published in journals specialized in computer sciences. The technologies used were neural learning techniques for 75 (42.1%), traditional learning techniques for 76 (42.7%), or a combination of several technologies for 20 (11.2%). Overall, 7 countries contributed to 109 (61.2%) studies. A total of 53 different applications of AI in dentistry were identified, involving most dental specialties. The use of initial data sets for internal validation was reported in 152 (85.4%) studies. Forty-five ethical issues (related to the use AI in dentistry) were reported in 22 (12.4%) studies around 6 principles: prudence (10 times), equity (8), privacy (8), responsibility (6), democratic participation (4), and solidarity (4). The ratio of studies mentioning AI-related ethical issues has remained similar in the past years, showing that there is no increasing interest in the field of dentistry on this topic. This study confirms the growing presence of AI in dentistry and highlights a current lack of information on the ethical challenges surrounding its use. In addition, the scarcity of studies sharing their code could prevent future replications. The authors formulate recommendations to contribute to a more responsible use of AI technologies in dentistry.