scholarly journals Dynamic analysis and controller design for a slider–crank mechanism with piezoelectric actuators

2016 ◽  
Vol 3 (4) ◽  
pp. 312-321 ◽  
Author(s):  
Samin Akbari ◽  
Fatemeh Fallahi ◽  
Tohid Pirbodaghi

Abstract Dynamic behaviour of a slider–crank mechanism associated with a smart flexible connecting rod is investigated. Effect of various mechanisms' parameters including crank length, flexibility of the connecting rod and the slider's mass on the dynamic behaviour is studied. Two control schemes are proposed for elastodynamic vibration suppression of the flexible connecting rod and also obtaining a constant angular velocity for the crank. The first scheme is based on feedback linearization approach and the second one is based on a sliding mode controller. The input signals are applied by an electric motor located at the crank ground joint, and two layers of piezoelectric film bonded to the top and bottom surfaces of the connecting rod. Both of the controllers successfully suppress the vibrations of the elastic linkage. Highlights Dynamic behaviour of a slider–crank mechanism associated with a smart flexible connecting rod is investigated. Effect of various mechanisms' parameters including crank length, flexibility of the connecting rod and the slider's mass on the dynamic behaviour is studied. Two control schemes are proposed for elastodynamic vibration suppression of the flexible connecting rod and also obtaining a constant angular velocity for the crank. Controllers are based on feedback linearization approach and sliding mode controller.

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6753
Author(s):  
Subarto Kumar Ghosh ◽  
Tushar Kanti Roy ◽  
Md. Abu Hanif Pramanik ◽  
Md. Apel Mahmud

This paper proposes a composite nonlinear controller combining backstepping and double-integral sliding mode controllers for DC–DC boost converter (DDBC) feeding by constant power loads (CPLs) to improve the DC-bus voltage stability under large disturbances in DC distribution systems. In this regard, an exact feedback linearization approach is first used to transform the nonlinear dynamical model into a simplified linear system with canonical form so that it becomes suitable for designing the proposed controller. Another important feature of applying the exact feedback linearization approach in this work is to utilize its capability to cancel nonlinearities appearing due to the incremental negative-impedance of CPLs and the non-minimum phase problem related to the DDBC. Second, the proposed backstepping double integral-sliding mode controller (BDI-SMC) is employed on the feedback linearized system to determine the control law. Afterwards, the Lyapunov stability theory is used to analyze the closed-loop stability of the overall system. Finally, a simulation study is conducted under various operating conditions of the system to validate the theoretical analysis of the proposed controller. The simulation results are also compared with existing sliding mode controller (ESMC) and proportional-integral (PI) control schemes to demonstrate the superiority of the proposed BDI-SMC.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Muthana T. Alrifai ◽  
Mohamed Zribi

This paper deals with the control of chaos in a power system. A fourth-order model is adopted for the power system. Three controllers are proposed to suppress the chaos and avoid voltage collapse. The controllers are a feedback linearization controller, a conventional sliding mode controller, and a second-order super-twisting sliding mode controller. It is shown that the proposed controllers guarantee the convergence of the states of the system to their desired values. Simulations studies are presented to show the effectiveness of the proposed control schemes.


2021 ◽  
Vol 233 ◽  
pp. 01051
Author(s):  
Tianze Miao ◽  
Xiaona Liu ◽  
Siyuan Liu ◽  
Lihua Wang

The bi-directional DC / DC converter in DC microgrid is a typical nonlinear system which has large voltage disturbance during lead accumulator charging and discharging. In order to solve the problem of voltage disturbance, the linearization of the converter is realized by exact feedback linearization, and the sliding mode controller is designed by using exponential approximation law. The simulation results show that the method has fast response speed, strong anti-interference ability and good steady-state characteristics.


Author(s):  
Ahmad Taher Azar ◽  
Fernando E. Serrano ◽  
Josep M. Rossell ◽  
Sundarapandian Vaidyanathan ◽  
Quanmin Zhu

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
P. Ahmadi ◽  
M. Golestani ◽  
S. Nasrollahi ◽  
A. R. Vali

A combination of two nonlinear control techniques, fractional order sliding mode and feedback linearization control methods, is applied to 3-DOF helicopter model. Increasing of the convergence rate is obtained by using proposed controller without increasing control effort. Because the proposed control law is robust against disturbance, so we only use the upper bound information of disturbance and estimation or measurement of the disturbance is not required. The performance of the proposed control scheme is compared with integer order sliding mode controller and results are justified by the simulation.


Author(s):  
Taipeng Wang ◽  
Sizhong Chen ◽  
Hongbin Ren ◽  
Yuzhuang Zhao

The new type of transportation based on intelligent driverless vehicles will bring great changes to people’s travel modes and put forward higher requirements for the ride comfortability of vehicles. This paper presents a new observing algorithm to estimate the suspension states in real time and cooperate with sliding mode controller to improve the ride comfortability. First, the nonlinear model of an air suspension system equipped with a continuously controllable damper is described in detail. Then, this nonlinear suspension model is linearized precisely based on the differential geometry theory; a linear Kalman filter observer is implemented for this linearized model; through the coordinate reverse transformation, the designed linear observer is transformed into a nonlinear one, which will be suitable for the original nonlinear system, so that, the proposed state observer can estimate all the states of the nonlinear quarter car suspension system. Then, in this nonlinear suspension system, a model reference sliding mode controller is designed to continuously control the damping force to improve the ride comfortability. Finally, the effectiveness and advantage of the proposed feedback linearization Kalman observer is illustrated by comparing with a traditional extended Kalman filter observer. The simulation research shows that the proposed feedback linearization observer enjoys a better estimation accuracy, higher operation efficiency, and greater control performance while cooperating with the sliding mode controller in ride comfortability control.


Author(s):  
J-H Park ◽  
K-W Kim ◽  
H-H Yoo

The performance of pointing systems mounted on top of a vehicle can be affectedby the bending vibrations as the vehicle runs on a bump course. In order to improve the pointing performance, the vibrations of the pointing structure should be suppressed. In this paper, a non-linear controller is designed to control the tip position of the pointing system while actively suppressing the vibrations. To cope with high-order dynamics and non-linearity of the plant and the hydraulic actuating system, a two-stage sliding mode controller is designed. The desired actuating pressure is obtained in the first stage and then the input current to the hydraulic servo system is computed to generate the pressure. The simulation results show the effectiveness of this scheme and the improvements obtained in pointing accuracy.


2013 ◽  
Vol 25 (1) ◽  
pp. 192-200 ◽  
Author(s):  
Dengfeng Li ◽  
◽  
Hector Martin Gutierrez

A novel 1-DOF hybrid magnetic suspension actuator for precise motion control is presented. The actuator is designed to achieve sub-micron positioning accuracy over a range of motion in excess of 1000 µm while avoiding large nominal levitation currents and iron core saturation. The proposed passive push-active pull configuration offers precise motion control with moderate actuator effort when a payload is to be accurately suspended over a large range of travel. The proposed actuator can be used modularly to control multiple axes of motion in a multi-DOF positioning application that requires millimeter-range travel with submicron accuracy. A Quasi-Sliding Mode controller (QSM) is presented in which the sliding mode dynamics are directly designed, as opposed to the typical Lyapunov function approach that is solely based on stability. Since full knowledge of the state vector is required, a nonlinear high-gain observer was also designed and implemented. Performance of the QSM algorithm in controlling the proposed actuator is compared to that of a PID controller with standard feedback linearization. Several experiments are conducted to demonstrate both the positioning and tracking capabilities of the proposed actuator. The proposed QSM method shows better transient performance than the standard PID feedback linearization approach. QSM also shows better tracking performance, which is highly desirable in systems in which fast and accurate motion control along a desired path is critical.


2012 ◽  
Vol 625 ◽  
pp. 88-92
Author(s):  
Cai Zhe Hao ◽  
Shi Hui Ma ◽  
Guang Xin Cai ◽  
Jian Guo Yu ◽  
Zhi Ning Jia

Based on the analysis to the geometric relations of eccentric slider-crank mechanism (ESCM) at two limiting positions, a new and simple graphic method for design of ESCM was proposed in the paper. The method has the characteristics of legible concept, concise operation and good practicality. Utilizing the new method, the ESCM could be designed quickly under given conditions (slider stroke H, coefficient of travel speed variation K, the auxiliary conditions such as the length of crank a, length of connecting rod b and deflection distance e) without any calculation. Meanwhile, under given conditions (H, K) the alternative region of crank fixed center A, the possible feasible regions of crank length a and deflection distance e were discussed.


Sign in / Sign up

Export Citation Format

Share Document