scholarly journals Combination of Two Nonlinear Techniques Applied to a 3-DOF Helicopter

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
P. Ahmadi ◽  
M. Golestani ◽  
S. Nasrollahi ◽  
A. R. Vali

A combination of two nonlinear control techniques, fractional order sliding mode and feedback linearization control methods, is applied to 3-DOF helicopter model. Increasing of the convergence rate is obtained by using proposed controller without increasing control effort. Because the proposed control law is robust against disturbance, so we only use the upper bound information of disturbance and estimation or measurement of the disturbance is not required. The performance of the proposed control scheme is compared with integer order sliding mode controller and results are justified by the simulation.

2016 ◽  
Vol 40 (4) ◽  
pp. 1049-1071 ◽  
Author(s):  
Kshetrimayum Lochan ◽  
Binoy Krishna Roy ◽  
Bidyadhar Subudhi

The problem of projected work space trajectory synchronization for multiple two link flexible manipulators is considered here. Generalized projective synchronization between a controlled master and multiple slave manipulators is presented in this paper. The master and slave manipulators are non-identical. A low frequency chaotic signal and an exponentially varying signal are used as the desired trajectories. An equivalent sliding mode controller is designed for the master manipulator to track the desired trajectory. A modified adaptive equivalent sliding mode controller is designed for the slave manipulators to be projectively synchronized with the controlled master. Two scaling factors are used for the projective synchronization. Simulation results, with disturbances and payload variation reveal that the master and multiple slaves are synchronized with their respective desired trajectories. Such projective synchronization between one master and multiple slaves using the proposed control techniques to track a low frequency chaotic desired signal is not found in the literature. Such projective synchronization to track a chaotic signal is considered as the novelty of this paper. The performances of the proposed control techniques are found to be better in terms of link deflections and control effort when compared with three other sliding mode control techniques.


Author(s):  
Jonathon E. Slightam ◽  
Mark L. Nagurka

This paper presents a modified integral sliding surface, sliding mode control law for pneumatic artificial muscles. The cutoff frequency tuning parameter λ is squared to increase the gradient from absement (integral of position) to position and higher derivatives to reflect the more dominant terms in the actuator dynamics. The sliding mode controller is coupled with proportional and integral action compensation. The control system is sufficiently robust so that use of an observer and input-output feedback linearization are not required. Closed-loop control experiments are compared with traditional sliding mode controller designs presented in the literature for pneumatic artificial muscles. Experiments include the tracking of sinusoidal waves at 0.5 and 1 Hz, tracking of square-like waves with seventh-order trajectory transitions at a rate of 0.2 Hz without and with a steady-state period of 10 seconds, as well as a step input response. These experiments indicate that the control law provides similar bandwidth, tracking, and steady-state performance as approaches requiring nonlinear feedback and model observation for pneumatic artificial muscles. Experiments demonstrate an accuracy of 50 μm at steady-state with no overshoot and maximum tracking errors less than 0.4 mm for smooth square-like trajectories.


2009 ◽  
Vol 23 (16) ◽  
pp. 2021-2034 ◽  
Author(s):  
XINGYUAN WANG ◽  
DA LIN ◽  
ZHANJIE WANG

In this paper, control of the uncertain multi-scroll critical chaotic system is studied. According to variable structure control theory, we design the sliding mode controller of the uncertain multi-scroll critical chaotic system, which contains sector nonlinearity and dead zone inputs. For an arbitrarily given equilibrium point of the uncertain multi-scroll chaotic system, we achieve global stabilization for the equilibrium points. Particularly, a class of proportional integral (PI) switching surface is introduced for determining the convergence rate. Furthermore, the proposed control scheme can be extended to complex multi-scroll networks. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control scheme.


Author(s):  
Jun Zhou ◽  
Jing Chang ◽  
Zongyi Guo

The paper describes the design of a fault-tolerant control scheme for an uncertain model of a hypersonic reentry vehicle subject to actuator faults. In order to improve superior transient performances for state tracking, the proposed method relies on a back-stepping sliding mode controller combined with an adaptive disturbance observer and a reference vector generator. This structure allows for a faster response and reduces the overshoots compared to linear conventional disturbance observers based sliding mode controller. Robust stability and performance guarantees of the overall closed-loop system are obtained using Lyapunov theory. Finally, numerical simulations results illustrate the effectiveness of the proposed technique.


2021 ◽  
Vol 39 (3A) ◽  
pp. 355-369
Author(s):  
Dina H. Tohma ◽  
Ahmed K. Hamoudi

This work aims to study and apply the adaptive sliding mode controller (ASMC) for the pendulum system with the existence of the parameters uncertainty, external disturbances, and coulomb friction. The adaptive sliding mode controller has several features over the conventional sliding mode control method. Firstly, the magnitude of the control signal is reduced to the minimally acceptable level defined by special conditions concerned with ASMC algorithm. Secondly, the upper bounds of uncertainties are not necessary to be defined before starting the work. For this reason, the ASMC can be used successfully to control the pendulum system with minimum control effort. These properties of the ASMC are confirming graphically by the simulation results using MATLAB 2019. The ASMC achieves an asymptotically stable system better than the Classical Sliding Mode Controller (CSMC). The unwanted phenomenon is called “chattering", which is appearing in the control action signal. These drawback properties are suppressed by employing a saturation function. Finally, the comparison between the results of the ASMC and CSMC showed that ASMC is the better one.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6402
Author(s):  
Jianning Shi ◽  
Chaoying Xia

This paper establishes the state-space model of the cup rotor permanent-magnet doubly fed machine in the synchronous reference frame. The feedback-linearization control method is used to realize the decoupling control of flux and torque. Then, the upper and lower load torque boundaries are solved. Furthermore, to minimize the stator current magnitude of the control machine under a certain torque, the maximum torque per ampere (MTPA) control is derived. Finally, simulation results demonstrate the good decoupling performance of the feedback-linearization control method and the correctness of the load torque boundaries. In addition, the effectiveness and robustness of the proposed control methods are also demonstrated.


2021 ◽  
Vol 233 ◽  
pp. 01051
Author(s):  
Tianze Miao ◽  
Xiaona Liu ◽  
Siyuan Liu ◽  
Lihua Wang

The bi-directional DC / DC converter in DC microgrid is a typical nonlinear system which has large voltage disturbance during lead accumulator charging and discharging. In order to solve the problem of voltage disturbance, the linearization of the converter is realized by exact feedback linearization, and the sliding mode controller is designed by using exponential approximation law. The simulation results show that the method has fast response speed, strong anti-interference ability and good steady-state characteristics.


2014 ◽  
Vol 14 (3) ◽  
pp. 96-109 ◽  
Author(s):  
Faculty of Automatics, Technical Un Enev

Abstract In this paper, two feedback linearizing control laws for the stabilization of the Inertia Wheel Pendulum are derived: a full-state linearizing controller, generalizing the existing results in literature, with friction ignored in the description and an inputoutput linearizing control law, based on a physically motivated definition of the system output. Experiments are carried out on a laboratory test bed with significant friction in order to test and verify the suggested performance and the results are presented and discussed. The main point to be made as a consequence of the experimental evaluation is the fact that actually the asymptotic stabilization was not achieved, but rather a limit cycling behavior was observed for the full-state linearizing controller. The input-output linearizing controller was able to drive the pendulum to the origin, with the wheel speed settling at a finite value


2013 ◽  
Vol 427-429 ◽  
pp. 1179-1182
Author(s):  
Sheng Bin Hu ◽  
Jin Yuan Xu ◽  
Xuan Wu ◽  
Chi Zhang ◽  
Yi Hao He

A fast terminal fuzzy sliding mode control scheme for the attitude of flapping wing micro aerial vehicle is proposed in this paper. Based on the feedback linearization technique, a fast terminal sliding mode controller is designed. To diminish the chattering in the control input, a fuzzy controller is designed to adjust the generalized gain of fast terminal fuzzy sliding mode controller according to fast terminal sliding mode surface. The stability of the control algorithm is verified by using Lyapunov theory. Simulation results show that the proposed control scheme is effective.


Sign in / Sign up

Export Citation Format

Share Document