scholarly journals A New Control Strategy for Bi-directional DC/DC Converter in DC Microgrid

2021 ◽  
Vol 233 ◽  
pp. 01051
Author(s):  
Tianze Miao ◽  
Xiaona Liu ◽  
Siyuan Liu ◽  
Lihua Wang

The bi-directional DC / DC converter in DC microgrid is a typical nonlinear system which has large voltage disturbance during lead accumulator charging and discharging. In order to solve the problem of voltage disturbance, the linearization of the converter is realized by exact feedback linearization, and the sliding mode controller is designed by using exponential approximation law. The simulation results show that the method has fast response speed, strong anti-interference ability and good steady-state characteristics.

The nonlinear property of bi-directional DC/DC converter in DC Microgrid will cause large voltage disturbance. To solve the above problems, a exact feedback linearization method based on nonlinear differential geometry theory is proposed to realize the linearization of the converter. Moreover, considering the approaching speed of the linearized Bruno standard model, a sliding mode controller is designed by using the exponential approach law. The simulation results show that the method has fast response speed, strong antiinterference ability and good steady-state characteristics.


Author(s):  
V. Jouppila ◽  
S. A. Gadsden ◽  
S. R. Habibi ◽  
G. M. Bone ◽  
A. Ellman

In this paper, a robust and stable control strategy is applied to a Festo fluidic muscle actuator, with the objective of trajectory following control. A complete model of this system is not available which leads to unmodeled dynamics and uncertainties. Furthermore, full-state feedback is required for this type of control. However, in practice not all of the states are measurable or available due to cost or availability of instruments, thus a full-state observer is required. The Smooth Variable Structure Filter (SVSF) is a recently introduced robust predictor-corrector method used for state and parameter estimation, and has a form that is able to provide full-state information. In this regard, a new strategy that combines Sliding Mode Control (SMC) with the SVSF is used to control this system. The estimated states from the SVSF are used by the sliding mode controller to obtain a discontinuous control signal. This signal drives the plant to follow a desired state trajectory required by the pneumatic McKibben muscle actuator. Simulation results were generated based on a realistic desired trajectory. The results of the SMC-SVSF control strategy are compared with a tuned PID controller. The described control strategy is able to overcome the nonlinearities present in the system, has a fast response time, and is robust to modeling uncertainties and measurement noise.


2011 ◽  
Vol 7 (1) ◽  
pp. 19-24
Author(s):  
Aamir Ahmed ◽  
Martino Ajangnay ◽  
Shamboul Mohamed ◽  
Matthew Dunnigan

Induction Motor (IM) speed control is an area of research that has been in prominence for some time now. In this paper, a nonlinear controller is presented for IM drives. The nonlinear controller is designed based on input-output feedback linearization control technique, combined with sliding mode control (SMC) to obtain a robust, fast and precise control of IM speed. The input-output feedback linearization control decouples the flux control from the speed control and makes the synthesis of linear controllers possible. To validate the performances of the proposed control scheme, we provided a series of simulation results and a comparative study between the performances of the proposed control strategy and those of the feedback linearization control (FLC) schemes. Simulation results show that the proposed control strategy scheme shows better performance than the FLC strategy in the face of system parameters variation.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Lei Zhang ◽  
Jing Bai ◽  
Jing Wu

To achieve the high-performance control of the surface-mounted permanent magnet synchronous motor (SPMSM) speed control system, this paper proposes a high-order sliding mode control strategy based on a new super twisting algorithm (NSTA). This strategy introduces an adaptive term in its proportional term based on the original super twisting algorithm, which solves low reaching speed and poor antidisturbance ability due to the square root calculation of proportional term in the original super twisting algorithm. The simulation results show that the proposed strategy can effectively improve the system’s response speed and antidisturbance and greatly suppress the chattering phenomenon of traditional sliding mode control.


2014 ◽  
Vol 574 ◽  
pp. 628-632
Author(s):  
Hong Li Cheng ◽  
Long Fei Jia

Current following control Buck DC-DC converter has such advantages as simple control strategy and fast response speed, in this paper, based on the existing control strategy, a detailed research is gave and a mathematical model is established to load sudden change. This improves the existing control strategy. The modified control strategies which can be divided into steady state control strategy and load change control strategy. By Simulation, the results shows that the proposed control strategy is feasible. Ensuring accuracy of output voltage while steady state, the modified control strategy obviously improves the dynamic performances, also shorter recovery time under the condition of the existing hardware parameters.


Author(s):  
Jonathon E. Slightam ◽  
Mark L. Nagurka

This paper presents a modified integral sliding surface, sliding mode control law for pneumatic artificial muscles. The cutoff frequency tuning parameter λ is squared to increase the gradient from absement (integral of position) to position and higher derivatives to reflect the more dominant terms in the actuator dynamics. The sliding mode controller is coupled with proportional and integral action compensation. The control system is sufficiently robust so that use of an observer and input-output feedback linearization are not required. Closed-loop control experiments are compared with traditional sliding mode controller designs presented in the literature for pneumatic artificial muscles. Experiments include the tracking of sinusoidal waves at 0.5 and 1 Hz, tracking of square-like waves with seventh-order trajectory transitions at a rate of 0.2 Hz without and with a steady-state period of 10 seconds, as well as a step input response. These experiments indicate that the control law provides similar bandwidth, tracking, and steady-state performance as approaches requiring nonlinear feedback and model observation for pneumatic artificial muscles. Experiments demonstrate an accuracy of 50 μm at steady-state with no overshoot and maximum tracking errors less than 0.4 mm for smooth square-like trajectories.


Actuators ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 3
Author(s):  
Mingkang Wang ◽  
Yan Wang ◽  
Rongrong Yang ◽  
Yongling Fu ◽  
Deming Zhu

Electro-hydrostatic actuator (EHA) has significance in a variety of industrial tasks. For the purpose of elevating the working performance, we put forward a sliding mode control strategy for EHA operation with a damping variable sliding surface. To start with, a novel sliding mode controller and an extended state observer (ESO) are established to perform the proposed control strategy. Furthermore, based on the modeling of the EHA, simulations are carried out to analyze the working properties of the controller. More importantly, experiments are conducted for performance evaluation based on the simulation results. In comparison to the widely used control strategies, the experimental results establish strong evidence of both overshoot suppression and system rapidity.


2020 ◽  
Vol 14 ◽  
Author(s):  
Gang Liu ◽  
Dong Qiu ◽  
Xiuru Wang ◽  
Ke Zhang ◽  
Huafeng Huang ◽  
...  

Background: The PWM Boost converter is a strongly nonlinear discrete system, especially when the input voltage or load varies widely, therefore, tuning the control parameters of which is a challenge work. Objective: In order to overcome the issues, particle swarm optimization (PSO) is employed for tuning the parameters of a sliding mode controller of a boost converter. Methods: Based on the analysis of the Boost converter model and its non-linear characteristics, a mathematic model of a boost converter with a sliding mode controller is built firstly. Then, the parameters of the Boost controller are adjusted based on the integrated time and absolute error (ITAE), integral square error (ISE) and integrated absolute error (IAE) indexes by PSO. Results: Simulation verification was performed, and the results show that the controllers tuned by the three indexes all have excellent robust stability. Conclusion: The controllers tuned by ITAE and ISE indexes have excellent steady-state performance, but the overshoot is large during the startup. The controller tuned by IAE index has better startup performance and slightly worse steady-state performance.


Author(s):  
Guang Xia ◽  
Yan Xia ◽  
Xiwen Tang ◽  
Linfeng Zhao ◽  
Baoqun Sun

Fluctuations in operation resistance during the operating process lead to reduced efficiency in tractor production. To address this problem, the project team independently developed and designed a new type of hydraulic mechanical continuously variable transmission (HMCVT). Based on introducing the mechanical structure and transmission principle of the HMCVT system, the priority of slip rate control and vehicle speed control is determined by classifying the slip rate. In the process of vehicle speed control, the driving mode of HMCVT system suitable for the current resistance state is determined by classifying the operation resistance. The speed change rule under HMT and HST modes is formulated with the goal of the highest production efficiency, and the displacement ratio adjustment surfaces under HMT and HST modes are determined. A sliding mode control algorithm based on feedforward compensation is proposed to address the problem that the oil pressure fluctuation has influences on the adjustment accuracy of hydraulic pump displacement. The simulation results of Simulink show that this algorithm can not only accurately follow the expected signal changes, but has better tracking stability than traditional PID control algorithm. The HMCVT system and speed control strategy models were built, and simulation results show that the speed control strategy can restrict the slip rate of driving wheels within the allowable range when load or road conditions change. When the tractor speed is lower than the lower limit of the high-efficiency speed range, the speed change law formulated in this paper can improve the tractor speed faster than the traditional rule, and effectively ensure the production efficiency. The research results are of great significance for improving tractor’s adaptability to complex and changeable working environment and promoting agricultural production efficiency.


Sign in / Sign up

Export Citation Format

Share Document