scholarly journals Foundations for low cost buildings

2016 ◽  
Vol 4 (2) ◽  
pp. 143-149 ◽  
Author(s):  
Sayed Abdel Salam ◽  
Mahmoud Samir El-kady

Abstract Attaining an economical and safe design of structures is regarded as a prerequisite for the structural engineer. The market prices of reinforcing steels have dramatically soared in recent years internationally. Therefore, the purpose of the current paper is not just reducing the ratio of reinforcing steel in the foundations for skeleton structures, but rather minimizing this ratio through choosing the most effective footing shape (folded strip footings). Folded footings have been used as an alternative to the conventional rectangular strip footings. The height of the studied model is ten floors. Two different foundation systems are used in the analysis namely; rectangular strip footings, and folded strip footings respectively. Both footing shapes will be designed as continuous footings with grid shape under the building. Comparison between the two systems is also presented regarding the concrete sections and reinforcement ratio under the same applied loads. The finite element analysis software ADINA is used in modeling and analysis of the structural and geotechnical behavior of both types of footings, with emphasis on the effect of changing the footing shape on the stresses in the footing concrete body and the underlying soils. Research results presents the internal stresses within the footing and soil domains, as well as the contact pressure distribution for a reinforced folded strip footing resting on different soil types. The influence of folding inclination angle, and soil type on the results are also studied. Results showed that folded strip footings are efficient in reducing the amount of needed reinforcements, and such efficiency in reducing the required steel reinforcement in the footings is depending on the applied footing loads, and to some degree on the soil type and properties. Reduction in the reinforcement ratio between the rectangular and folded footing types is about 26% in favor of the folded strip footings. A comparative economical study shows that the total cost of the reinforced concrete section for the folded strip footings is less than the traditional one by about 18%. This difference in cost of both types of footings is mainly due to the relatively smaller in steel reinforcement ratio needed for the folded type as compared with the rectangular ones. So, the folded strip footing is more economical than the rectangular strip footing. Highlights Two different foundation systems are used in the analysis namely; rectangular strip footings, and folded strip footings respectively. The finite element analysis software ADINA is used in modeling and analysis of structural and geotechnical behavior of both types of footings with emphasis on the effect of changing the footing shape and soil type (Ks) on the stresses and soil settlement. Results showed that the maximum value of contact pressure decreased by about 38% for folded strip footing when compared with the traditional strip footing in stiff clay soil, and by about 25% in dense sand soil when increasing vertical static load to its peak value. The reduction in the reinforcement ratio between the two types of footings is about 26% in favor of the folded strip footings. While the total cost of the concrete for the folded strip footings is less than the rectangular one by about 18%. So, the folded shape is more economical than the ordinary rectangular strip footing.

2013 ◽  
Vol 470 ◽  
pp. 408-411 ◽  
Author(s):  
Yan Zhong Ju ◽  
Xiao Xu Fu ◽  
Neng Xian Zeng

Given the path situation of Xiyue substation 220kV four outlets project crossing Shunde waterway section,this article applies of Dao Heng tower full stress analysis software and the finite element analysis software ANSYS to two steel pipe combination of angle steel towers to carry on design research,contrast axial stress of two kinds of software,analyse the reasons of axial stress difference.


2013 ◽  
Vol 313-314 ◽  
pp. 1038-1041
Author(s):  
Shou Jun Wang ◽  
Xing Xiong ◽  
Chao Li

According to uncertainty of the design parameters for large span truss of installing wave-maker, in order to avoid the waste of materials,the truss is analyzed based on the finite element analysis software ANSYS to find out its weaknesses and various parts of the deformation. On the premise of ensuring the intensity and stiffness, the weight of the truss is reduced by adjusting its sizes and selecting different profiles, so as to achieve the optimization of the truss of installing wave-maker.


2019 ◽  
Vol 9 (15) ◽  
pp. 2948
Author(s):  
Carlos G. Manríquez-Padilla ◽  
Oscar A. Zavala-Pérez ◽  
Gerardo I. Pérez-Soto ◽  
Juvenal Rodríguez-Reséndiz ◽  
Karla A. Camarillo-Gómez

In this paper, a new form-finding analysis methodology for a class 2 tensegrity robot is proposed. The methodology consists of two steps: first, the analysis of the possible geometric configurations of the robot is carried out through the results of the kinematic position analysis; and, second, from the static analysis, the equilibrium positions of the robot are found, which represents its workspace. Both kinematics and static analysis are resolved in a closed-form using basic tools of linear algebra instead of the strategies used in literature. Four numerical experiments are presented using the finite element analysis software ANSYS©. Additionally, a comparison between the results of the form-finding analysis methodology proposed and the ANSYS© results is presented.


2011 ◽  
Vol 52-54 ◽  
pp. 1147-1152
Author(s):  
Guang Guo Zhang ◽  
Wei Jiang ◽  
Hong Hua Zhang ◽  
Huan Wang

In the traditional designs of milling cutter, we cannot get the required accuracy of machining as there may be local deformation on the edges, even more the cutter can break down. Aiming at this situation, a finite-element model of straight pin milling cutter with helical tooth are built using Marc, a nonlinear finite-element analysis software, the different cutting forces of the milling cutter during the cutting process are analyzed and the cutting forces of the milling cutter at different parameters are studied. We get the stress, the strain and the temperature distribution of the milling cutter in different situation. Our work offer a theoretical basis of improving stress of the cutter, designing the structure of cutters reasonably and analyzing the cutter failure as well as a new method of analysis and calculation of the cutter life and strength.


2013 ◽  
Vol 438-439 ◽  
pp. 926-929
Author(s):  
Ji Hao Chen ◽  
Yu Jia Gao ◽  
Sen Liu ◽  
Yong Peng Sun

In order to ensure the safety of the scaffolding of the home block for hanging cradle construction, this paper makes use of probabilistic limit state method, and carries out the checking computation. According to the actual drawings of the Qinhe bridge and the actual load case, the analytical model is established through the finite element analysis software MIDAS/CIVIL. The results show that the slant tube may be flexural buckling, and the stress of side standing tube is over the design strength of material, so that there is potential danger of the scaffolding. After the horizontal tubes were installed along the boundary of scaffolding, the stresses of all tubes are less than the design strength of corresponding material.


2012 ◽  
Vol 594-597 ◽  
pp. 642-646
Author(s):  
Anji Yu ◽  
Jie Liu ◽  
Dong Dong Yang ◽  
Hua Feng Cao ◽  
Xiao Pei Yang

In view of highway slope stability problems, this paper puts forward the method that numerical modeling of the road slope by the finite element analysis software —ADINA, with the Gravity Loading Proportion Methodto calculate the slope stability coefficient, deeply research the development process of deformation, breakage characteristics and stability of road high cutting slope. Comparison with the results obtained by the strength reduction FEM proposed by AcademicianYingrenZhengshows that the proposed method is more simple and reasonable to determine slope stability or not.


2014 ◽  
Vol 1055 ◽  
pp. 218-223
Author(s):  
Jin Yu ◽  
Xiu Feng Zhu ◽  
Yan Liang Gao

This paper indicates a kind of research on the optimization of clamping scheme for the joint thin-walled parts in milling process .The three-dimensional model of four-flute end mill and the part are made by UG. The effect of different clamping scheme on the deformation of joint structure is simulated by the finite element analysis software ABAQUS. With the purpose of getting the minimum of the average deformation, MATLAB genetic algorithm optimizes the clamping scheme and acquires the best clamping scheme. The simulation and optimization provide an effective method for controlling the deformation due to different clamping scheme of aeronautic joint-shaped workpiece.


2012 ◽  
Vol 201-202 ◽  
pp. 907-911 ◽  
Author(s):  
Feng Yi Feng ◽  
Yu Guo Cui ◽  
Fei Xue ◽  
Liang En Wu

Based on the requirements of that the finger can move in parallel, and the displacement of the finger can be detected, the micro-gripper driven by piezoelectric actuator is designed based on the displacement amplification structure with the flexure hinge. The static analysis, the modal analysis, the harmonic response analysis and the transient response analysis of the micro-gripper are carried out by using the finite element analysis software ANSYS. The results of the finite element analysis show that the finger is fully able to move in parallel, and can detect the displacement of the finger; the maximum displacement of the finger is about 101 μm, the first natural frequency is about 130 Hz; the finger tip displacement under the 1 μm step input is about 20 μm, the fingertip vibration is about ±2 μm.


2011 ◽  
Vol 368-373 ◽  
pp. 1125-1129
Author(s):  
Chang Jiang Liu ◽  
Jin Long Wang

The finite element model about greenhouse canopy of seismic analysis was setted up, The finite element analysis software ANSYS was used to study structure displacement, stress analysis on greenhouse shed. The results showed that the dangerous part of the canopy were located on upper chord members,lower chord members, web members of the framework and the lower and upper, the inside of both sides of the wall with seismic load.Corresponding to this results ,the main destroied form were the framework damage caused by the bending deformation of upper chord members, lower chord members and the upper web members and the unstability caused by the distortion of both sides of the wall.


Sign in / Sign up

Export Citation Format

Share Document