Trust in Machine Learning Models for Mortality Prediction Following Mitral TEER

2021 ◽  
Vol 14 (18) ◽  
pp. 2037-2038
Author(s):  
Thomas Modine ◽  
Nils Perrin ◽  
Walid Ben Ali
PLoS ONE ◽  
2018 ◽  
Vol 13 (11) ◽  
pp. e0207192 ◽  
Author(s):  
Cheng-Shyuan Rau ◽  
Pao-Jen Kuo ◽  
Peng-Chen Chien ◽  
Chun-Ying Huang ◽  
Hsiao-Yun Hsieh ◽  
...  

2020 ◽  
Vol 7 (4) ◽  
pp. 212-219 ◽  
Author(s):  
Aixia Guo ◽  
Michael Pasque ◽  
Francis Loh ◽  
Douglas L. Mann ◽  
Philip R. O. Payne

Abstract Purpose of Review One in five people will develop heart failure (HF), and 50% of HF patients die in 5 years. The HF diagnosis, readmission, and mortality prediction are essential to develop personalized prevention and treatment plans. This review summarizes recent findings and approaches of machine learning models for HF diagnostic and outcome prediction using electronic health record (EHR) data. Recent Findings A set of machine learning models have been developed for HF diagnostic and outcome prediction using diverse variables derived from EHR data, including demographic, medical note, laboratory, and image data, and achieved expert-comparable prediction results. Summary Machine learning models can facilitate the identification of HF patients, as well as accurate patient-specific assessment of their risk for readmission and mortality. Additionally, novel machine learning techniques for integration of diverse data and improvement of model predictive accuracy in imbalanced data sets are critical for further development of these promising modeling methodologies.


Author(s):  
Salvatore Tedesco ◽  
Martina Andrulli ◽  
Markus Åkerlund Larsson ◽  
Daniel Kelly ◽  
Antti Alamäki ◽  
...  

As global demographics change, ageing is a global phenomenon which is increasingly of interest in our modern and rapidly changing society. Thus, the application of proper prognostic indices in clinical decisions regarding mortality prediction has assumed a significant importance for personalized risk management (i.e., identifying patients who are at high or low risk of death) and to help ensure effective healthcare services to patients. Consequently, prognostic modelling expressed as all-cause mortality prediction is an important step for effective patient management. Machine learning has the potential to transform prognostic modelling. In this paper, results on the development of machine learning models for all-cause mortality prediction in a cohort of healthy older adults are reported. The models are based on features covering anthropometric variables, physical and lab examinations, questionnaires, and lifestyles, as well as wearable data collected in free-living settings, obtained for the “Healthy Ageing Initiative” study conducted on 2291 recruited participants. Several machine learning techniques including feature engineering, feature selection, data augmentation and resampling were investigated for this purpose. A detailed empirical comparison of the impact of the different techniques is presented and discussed. The achieved performances were also compared with a standard epidemiological model. This investigation showed that, for the dataset under consideration, the best results were achieved with Random UnderSampling in conjunction with Random Forest (either with or without probability calibration). However, while including probability calibration slightly reduced the average performance, it increased the model robustness, as indicated by the lower 95% confidence intervals. The analysis showed that machine learning models could provide comparable results to standard epidemiological models while being completely data-driven and disease-agnostic, thus demonstrating the opportunity for building machine learning models on health records data for research and clinical practice. However, further testing is required to significantly improve the model performance and its robustness.


2021 ◽  
Vol 28 (1) ◽  
pp. e100407
Author(s):  
Joshua David Cardosi ◽  
Herman Shen ◽  
Jonathan I Groner ◽  
Megan Armstrong ◽  
Henry Xiang

ObjectivesTo develop and evaluate a machine learning model for predicting patient with trauma mortality within the US emergency departments.MethodsThis was a retrospective prognostic study using deidentified patient visit data from years 2007 to 2014 of the National Trauma Data Bank. The predictive model intelligence building process is designed based on patient demographics, vital signs, comorbid conditions, arrival mode and hospital transfer status. The mortality prediction model was evaluated on its sensitivity, specificity, area under receiver operating curve (AUC), positive and negative predictive value, and Matthews correlation coefficient.ResultsOur final dataset consisted of 2 007 485 patient visits (36.45% female, mean age of 45), 8198 (0.4%) of which resulted in mortality. Our model achieved AUC and sensitivity-specificity gap of 0.86 (95% CI 0.85 to 0.87), 0.44 for children and 0.85 (95% CI 0.85 to 0.85), 0.44 for adults. The all ages model characteristics indicate it generalised, with an AUC and gap of 0.85 (95% CI 0.85 to 0.85), 0.45. Excluding fall injuries weakened the child model (AUC 0.85, 95% CI 0.84 to 0.86) but strengthened adult (AUC 0.87, 95% CI 0.87 to 0.87) and all ages (AUC 0.86, 95% CI 0.86 to 0.86) models.ConclusionsOur machine learning model demonstrates similar performance to contemporary machine learning models without requiring restrictive criteria or extensive medical expertise. These results suggest that machine learning models for trauma outcome prediction can generalise to patients with trauma across the USA and may be able to provide decision support to medical providers in any healthcare setting.


2020 ◽  
Vol 2 (1) ◽  
pp. 3-6
Author(s):  
Eric Holloway

Imagination Sampling is the usage of a person as an oracle for generating or improving machine learning models. Previous work demonstrated a general system for using Imagination Sampling for obtaining multibox models. Here, the possibility of importing such models as the starting point for further automatic enhancement is explored.


2021 ◽  
Author(s):  
Norberto Sánchez-Cruz ◽  
Jose L. Medina-Franco

<p>Epigenetic targets are a significant focus for drug discovery research, as demonstrated by the eight approved epigenetic drugs for treatment of cancer and the increasing availability of chemogenomic data related to epigenetics. This data represents a large amount of structure-activity relationships that has not been exploited thus far for the development of predictive models to support medicinal chemistry efforts. Herein, we report the first large-scale study of 26318 compounds with a quantitative measure of biological activity for 55 protein targets with epigenetic activity. Through a systematic comparison of machine learning models trained on molecular fingerprints of different design, we built predictive models with high accuracy for the epigenetic target profiling of small molecules. The models were thoroughly validated showing mean precisions up to 0.952 for the epigenetic target prediction task. Our results indicate that the herein reported models have considerable potential to identify small molecules with epigenetic activity. Therefore, our results were implemented as freely accessible and easy-to-use web application.</p>


Sign in / Sign up

Export Citation Format

Share Document